Diskrete Mathematik

Exercise 14

14.1 Prenex Normal Form (\star)

For each of the following formulas, find an equivalent formula in the prenex normal form.
i) $(\forall x P(x)) \rightarrow Q(x)$
ii) $\forall z \exists y(P(x, g(y), z) \vee \neg \forall x Q(x)) \wedge \neg \forall z \exists x \neg R(f(x, z), z)$

14.2 The Barber of Zürich (\star)

Use Theorem 6.13 to show that there does not exist in Zürich a barber who shaves all those and exactly those who do not shave themselves.

14.3 The Exercise $14(\star \star \star)$

Prove the following statement about the students who attend the Discrete Mathematics lecture:
"There exists a student, such that if this student solves Exercise 14, then all students solve Exercise 14."

To this end, proceed in following steps:
a) Let U be the set of all students who attend the Discrete Mathematics lecture. Let P be the predicate defined as $P(s)=1$ if and only if the student s solves Exercise 14 . Describe the above statement by a formula F that uses P.
b) Show that F is a tautology (that is, show that it is true for any U and P).
c) Find a different (interesting) interpretation for F, which defines U and P.

14.4 Formulas and Statements ($\star \star$)

For each of the following expressions, determine whether it is syntactically correct, and, if so, whether it is a formula or a statement about formulas ${ }_{\square}^{1}$ If an expression is a statement, decide whether it is true or false (each time justify your answer).
a) $\forall x \exists y(P(z) \leftrightarrow Q(f(f(x, z), y)))$
b) $(\forall x P(x)) \models P(x)$

[^0]c) $(P(x) \models P(x)) \equiv Q(x)$
d) $\{P(x), P(f(a))\} \models P(a)$

14.5 Calculi

a) (\star) Decide which of the following rules are correct (justify your answers):

$$
\begin{array}{rcc}
\{F\} \vdash_{R_{1}} F \vee G & \{F \wedge G\} \vdash \vdash_{R_{2}} F & \{\neg(F \wedge G)\} \vdash_{R_{3}} \neg F \wedge \neg G \\
\{F, F \rightarrow G\} \vdash_{R_{4}} G & \{F \rightarrow G\} \vdash \vdash_{R_{5}} \neg F \rightarrow \neg G & \{F, G\} \vdash_{R_{6}} F \wedge G
\end{array}
$$

b) $(\star \star)$ Let K be the calculus, consisting of those of the rules in Subtask a), which are correct. Using K, derive formally the formula $A \wedge B \wedge C \wedge D$ from the following set of formulas:

$$
\{(D \wedge A) \rightarrow C, A \wedge B, B \wedge A,(B \vee C) \rightarrow D\}
$$

c) $(\star \star)$ Is $K^{\prime}=\left\{R_{2}, R_{4}\right\}$ complete? Justify your answer.
d) ($\star \star$) Give an example of a calculus, which is complete but not sound.

14.6 Resolution

a) (\star) Prove the following statements using the resolution calculus.
i) $F=(A \vee B) \wedge(\neg E) \wedge(\neg B \vee D) \wedge(\neg D \vee E) \wedge(\neg A \vee B)$ is not satisfiable.
ii) $G=(\neg B \wedge \neg C \wedge D) \vee(\neg B \wedge \neg D) \vee(C \wedge D) \vee B$ is a tautology.
iii) $H=A \wedge C$ is a logical consequence of $M=\{A \rightarrow C, B \rightarrow A, A \vee B\}$.
b) ($\star \star \star$) Intuitively, the goal is to show that from a finite set of finite clauses, after a finite number of applications of derivation rules, no new clauses can be derived. More specifically, let \mathcal{K} be a finite set of finite clauses and let $\mathcal{K}_{0}, \mathcal{K}_{1}, \ldots$ be a sequence of applications of derivation rules, such that $\mathcal{K}_{0}=\mathcal{K}$ and $\mathcal{K}_{i}=\mathcal{K}_{i-1} \cup\{K\}$ for all $i>0$, where $\left\{K^{\prime}, K^{\prime \prime}\right\} \vdash_{\text {res }} K$ for some $K^{\prime}, K^{\prime \prime} \in \mathcal{K}_{i-1}$. Show that there exists an n such that $\mathcal{K}_{m}=\mathcal{K}_{n}$ for all $m>n$.
c) $(\star \star *)$ Show that the statement from Subtask b) is no longer true for an infinite set \mathcal{K} of finite clauses. More precisely, let $\mathcal{K}=\left\{\left\{A_{j}, \neg A_{j+1}\right\} \mid j \in \mathbb{N}\right\}$. Show that there exists an infinite sequence $\mathcal{K}_{0}, \mathcal{K}_{1}, \ldots$, such that $\mathcal{K}_{0}=\mathcal{K}$ and $\mathcal{K}_{i}=\mathcal{K}_{i-1} \cup\{K\}$ for all $i>0$, where $\left\{K^{\prime}, K^{\prime \prime}\right\} \vdash_{\text {res }} K$ for some $K^{\prime}, K^{\prime \prime} \in \mathcal{K}_{i-1}$, and for all $i>0, \mathcal{K}_{i} \neq \mathcal{K}_{i-1}$.

[^0]: ${ }^{1}$ Whenever parentheses are not necessary, they can be omitted. Parentheses do not influence correctness.

