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Exercise 14

14.1 Prenex Normal Form (?)

For each of the following formulas, find an equivalent formula in the prenex normal form.

i)
(
∀x P (x)

)
→ Q(x)

ii) ∀z∃y
(
P (x, g(y), z) ∨ ¬∀xQ(x)

)
∧ ¬∀z∃x ¬R(f(x, z), z)

14.2 The Barber of Zürich (?)

Use Theorem 6.13 to show that there does not exist in Zürich a barber who shaves all those
and exactly those who do not shave themselves.

14.3 The Exercise 14 (? ? ?)

Prove the following statement about the students who attend the Discrete Mathematics
lecture:

“There exists a student, such that if this student solves Exercise 14, then all
students solve Exercise 14.”

To this end, proceed in following steps:

a) Let U be the set of all students who attend the Discrete Mathematics lecture. Let P
be the predicate defined as P (s) = 1 if and only if the student s solves Exercise 14.
Describe the above statement by a formula F that uses P .

b) Show that F is a tautology (that is, show that it is true for any U and P ).

c) Find a different (interesting) interpretation for F , which defines U and P .

14.4 Formulas and Statements (? ?)

For each of the following expressions, determine whether it is syntactically correct, and, if
so, whether it is a formula or a statement about formulas.1 If an expression is a statement,
decide whether it is true or false (each time justify your answer).

a) ∀x ∃y
(
P (z)↔ Q(f(f(x, z), y))

)
b)

(
∀x P (x)

)
|= P (x)

1Whenever parentheses are not necessary, they can be omitted. Parentheses do not influence correctness.



c) (P (x) |= P (x)) ≡ Q(x)

d) {P (x), P (f(a))} |= P (a)

14.5 Calculi

a) (?) Decide which of the following rules are correct (justify your answers):

{F} `R1 F ∨G {F ∧G} `R2 F {¬(F ∧G)} `R3 ¬F ∧ ¬G
{F, F → G} `R4 G {F → G} `R5 ¬F → ¬G {F,G} `R6 F ∧G

b) (? ?) Let K be the calculus, consisting of those of the rules in Subtask a), which are
correct. Using K, derive formally the formula A ∧ B ∧ C ∧D from the following set
of formulas:

{(D ∧A)→ C, A ∧B, B ∧A, (B ∨ C)→ D}

c) (? ?) Is K ′ = {R2, R4} complete? Justify your answer.

d) (? ?) Give an example of a calculus, which is complete but not sound.

14.6 Resolution

a) (?) Prove the following statements using the resolution calculus.

i) F = (A ∨B) ∧ (¬E) ∧ (¬B ∨D) ∧ (¬D ∨ E) ∧ (¬A ∨B) is not satisfiable.

ii) G = (¬B ∧ ¬C ∧D) ∨ (¬B ∧ ¬D) ∨ (C ∧D) ∨B is a tautology.

iii) H = A ∧ C is a logical consequence of M = {A→ C,B → A,A ∨B}.

b) (? ? ?) Intuitively, the goal is to show that from a finite set of finite clauses, after
a finite number of applications of derivation rules, no new clauses can be derived.
More specifically, letK be a finite set of finite clauses and letK0,K1, . . . be a sequence
of applications of derivation rules, such that K0 = K and Ki = Ki−1 ∪ {K} for all
i > 0, where {K ′,K ′′} `res K for some K ′,K ′′ ∈ Ki−1. Show that there exists an n
such that Km = Kn for all m > n.

c) (? ? ?) Show that the statement from Subtask b) is no longer true for an infinite set
K of finite clauses. More precisely, let K = {{Aj ,¬Aj+1} | j ∈ N}. Show that there
exists an infinite sequence K0,K1, . . . , such that K0 = K and Ki = Ki−1 ∪ {K} for all
i > 0, where {K ′,K ′′} `res K for some K ′,K ′′ ∈ Ki−1, and for all i > 0, Ki 6= Ki−1.
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