Diskrete Mathematik Solution 14

14.1 Prenex Normal Form

i) An equivalent formula in the prenex normal form is

$$
\exists y(\neg P(y) \vee Q(x))
$$

To find this formula, we proceed as follows:

1. Identify the free variables: $(\forall x P(x)) \rightarrow Q(\underline{x})$.
2. Transform the formula into the rectified form by renaming the bound variables: $(\forall y P(y)) \rightarrow Q(x)$.
3. Apply Lemma 6.8 :

$$
\begin{array}{rlr}
(\forall y P(y)) \rightarrow Q(x) & \equiv \neg(\forall y P(y)) \vee Q(x) & \text { (def. } \rightarrow \text {) } \\
& \equiv(\exists y \neg P(y)) \vee Q(x) & \text { (Lem. 6.8,1)) } \tag{Lem.6.8,1}\\
& \equiv \exists y(\neg P(y) \vee Q(x)) & \text { (Lem. 6.8, 10)) }
\end{array}
$$

ii) An equivalent formula in the prenex normal form is

$$
\forall z \exists y \exists t \exists u \forall v((P(x, g(y), z) \vee \neg Q(t)) \wedge R(f(v, u), u))
$$

To find this formula, we proceed as follows:

1. Identify the free variables:

$$
\forall z \exists y(P(\underline{x}, g(y), z) \vee \neg \forall x Q(x)) \wedge \neg \forall z \exists x \neg R(f(x, z), z) .
$$

2. Transform the formula into the rectified form by renaming the bound variables:

$$
\forall z \exists y(P(x, g(y), z) \vee \neg \forall t Q(t)) \wedge \neg \forall u \exists v \neg R(f(v, u), u)
$$

3. Apply Lemma 6.8.

$$
\begin{aligned}
& \forall z \exists y(P(x, g(y), z) \vee \neg \forall t Q(t)) \wedge \neg \forall u \exists v \neg R(f(v, u), u) \\
& \quad \equiv \forall z \exists y(P(x, g(y), z) \vee \exists t \neg Q(t)) \wedge \exists u \forall v R(f(v, u), u) \\
& \quad \equiv \forall z \exists y \exists t \exists u \forall v((P(x, g(y), z) \vee \neg Q(t)) \wedge R(f(v, u), u)) \\
& \quad \text { (Lem. 6.8, 7) to 10)) }
\end{aligned}
$$

14.2 The Barber of Zürich

By Theorem 6.13,

$$
F=\neg \exists x \forall y(P(y, x) \leftrightarrow \neg P(y, y))
$$

is a tautology, that is, each interpretation \mathcal{A} suitable for F is a model for F. Consider the following interpretation \mathcal{A} : the universe $U^{\mathcal{A}}$ is the set of all people in Zürich and $P^{\mathcal{A}}(x, y)=$ 1 if and only if the person y shaves the person x. In this interpretation, the formula F denotes the statement "There does not exist a person x (the barber) in Zürich, such that for every person y in Zürich, x shaves y if and only if y does not shave himself".

14.3 The Exercise 14

a) The statement can be described as follows:

$$
F=\exists x(P(x) \rightarrow \forall y P(y))
$$

b)

$$
\begin{align*}
F & \equiv \exists x(\neg P(x) \vee \forall y P(y)) \\
& \equiv(\exists x \neg P(x)) \vee(\forall y P(y)) \tag{Lem.6.810}\\
& \equiv \neg(\forall x P(x)) \vee(\forall y P(y)) \\
& \equiv \neg(\forall x P(x)) \vee(\forall x P(x)) \\
& \equiv 丁
\end{align*}
$$

(def. \rightarrow)
(Lem. 6.8 1))
(Lem. 6.10)
(Lem. 6.1 11))
c) Let U be the set of all people in a pub, and let P be the predicate, which is true if a given person drinks. F can now be interpreted as follows:
"There is a person in the pub, such that if this person drinks, then everyone drinks."

Let U be the set of all professors at ETH, and let P be the predicate, which is true if a professor understands his or her field. F can be interpreted as follows:
"There is a professor at ETH, such that if he or she understands their field, then all professors understand their fields."

14.4 Formulas and Statements

a) This expression is a formula.
b) This is a statement about the formulas $\forall x P(x)$ and $P(x)$.

The statement is true. To prove this, take any interpretation \mathcal{A} suitable for both $\forall x P(x)$ and $P(x)$ (that is, \mathcal{A} defines P and the free variable x), that is a model for $\forall x P(x)$. Since $\mathcal{A}(\forall x P(x))=1$, it follows that $\mathcal{A}_{[x \rightarrow u]}(P(x))=1$ for all $u \in U^{\mathcal{A}}$. Hence, no matter which $u \in U^{\mathcal{A}}$ is assigned to the free occurrence of x by \mathcal{A}, we have $\mathcal{A}(P(x))=1$. Therefore, \mathcal{A} is also a model for $P(x)$.
c) This expression is not syntactically correct, since \equiv can only be used between formulas and $P(x) \models P(x)$ is a statement, not a formula.
d) This is a statement about formulas.

The statement is false. As a counterexample, consider the structure: $U^{\mathcal{A}}=\{0,1\}$, $P^{\mathcal{A}}(x)=1 \Longleftrightarrow x=1, x^{\mathcal{A}}=1, f^{\mathcal{A}}(x) \equiv 1, a^{\mathcal{A}}=0$. Then we have $\mathcal{A}(P(x))=1$ and $\mathcal{A}(P(f(a)))=1$, but $\mathcal{A}(P(a))=0$.

14.5 Calculi

a) The following rules are correct: R_{1}, R_{2}, R_{4} and R_{6}.

To show this, for each rule R we consider the statement $M \models H$ for a set M and a formula H. If this statement is true for any M and H such that $M \vdash_{R} H$, then the rule is correct. We show $M \models H$ by drawing a function table and checking that the truth value of H is 1 whenever the truth values of all formulas in M are 1 . A rule is incorrect if the statement $M \models H$ is false. We show this by giving a counterexample (the counterexamples are the rows in the corresponding function tables, printed in bold).

F	G	F	$F \vee G$	F	G	$F \wedge G$	F	F	G	$\neg(F \wedge G)$	$\neg F \wedge \neg G$
0	0	0	0	0	0	0	0	0	0	1	1
$R_{1}: 0$	1	0	1	R_{2} : 0	1	0	0	$R_{3}: 0$	1	1	0
1	0	1	1	1	0	0	1	1	0	1	0
1	1	1	1	1	1	1	1	1	1	0	0

F	G	F	$F \rightarrow G$	G		F	G	$F \rightarrow G$	$\neg F \rightarrow \neg G$		F	G	$F \wedge G$
0	0	0	1	0		0	0	1	1		0	0	0
$R_{4}: 0$	1	0	1	1	R_{5} :	0	1	1	0	R_{6} :	0	1	0
1	0	1	0	0		1	0	0	1		1	0	0
1	1	1	1	1		1	1	1	1		1	1	1

b) We have $K=\left\{R_{1}, R_{2}, R_{4}, R_{6}\right\}$. The derivation is the following:

$$
\begin{aligned}
& \{B \wedge A\} \vdash_{R_{2}} B \\
& \{B\} \vdash_{R_{1}} B \vee C \\
& \{B \vee C,(B \vee C) \rightarrow D\} \vdash_{R_{4}} D \\
& \{A \wedge B\} \vdash_{R_{2}} A \\
& \{D, A\} \vdash_{R_{6}} D \wedge A \\
& \{D \wedge A,(D \wedge A) \rightarrow C\} \vdash_{R_{4}} C \\
& \{A \wedge B, C\} \vdash_{R_{6}} A \wedge B \wedge C \\
& \{A \wedge B \wedge C, D\} \vdash_{R_{6}} A \wedge B \wedge C \wedge D
\end{aligned}
$$

c) The calculus $K^{\prime}=\left\{R_{2}, R_{4}\right\}$ is not complete. As a counterexample, consider the set $M_{0}=\{A \wedge B\}$ and the formula $H=B \wedge A$. We have $A \wedge B \models B \wedge A$. However, H cannot be derived from M_{0}. Indeed, to M_{0} one can only apply R_{2} with $F=A$ and $G=B$, obtaining the set $M_{1}=\{A \wedge B, A\}$. But no new formulas can be derived from M_{1}.
d) For example, the following calculus $K^{\prime \prime}=\{R\}$ with $\varnothing \vdash_{R} F$ is complete but not sound.

In the calculus $K^{\prime \prime}$, one can derive exactly all formulas. Hence, it is clearly complete. It is also clearly not sound, since for example, the formula $A \wedge B$ can be derived and it is not a tautology.

14.6 Resolution

a) i) The clauses are: $\{A, B\},\{\neg E\},\{\neg B, D\},\{\neg D, E\},\{\neg A, B\}$.

Hence, the formula is not satisfiable.
ii) The formula $G=(\neg B \wedge \neg C \wedge D) \vee(\neg B \wedge \neg D) \vee(C \wedge D) \vee B$ is a tautology if and only if

$$
\neg G \equiv(B \vee C \vee \neg D) \wedge(B \vee D) \wedge(\neg C \vee \neg D) \wedge(\neg B)
$$

is not satisfiable. We show this, using the resolution calculus:

iii) Let $\mathcal{K}(M)=\{\{\neg A, C\},\{A, \neg B\},\{A, B\}\}$ be the set of clauses, corresponding to the set M. The set of clauses corresponding to $\neg H$ is $\mathcal{K}(\neg H)=\{\neg A, \neg C\}$ We show that $\mathcal{K}(M) \cup \mathcal{K}(\neg H)$ is unsatisfiable.

b) There is only a finite number of atomic formulas in \mathcal{K}. Let k denote their number. Since in a clause an atomic formula can either: appear plain, appear negated, appear in both forms or not appear at all, the number of possible clauses that can be derived from \mathcal{K} is 4^{k}. Now for all $i \geq 0$, we have $\mathcal{K}_{i} \subseteq \mathcal{K}_{i+1}$. It follows that $\left|\mathcal{K}_{i}\right| \leq\left|\mathcal{K}_{i+1}\right|$, which, together with the fact that $\left|\mathcal{K}_{i}\right| \leq 4^{k}$, implies that for some
$n \geq 0$, we have $\left|\mathcal{K}_{n}\right|=\left|\mathcal{K}_{n+1}\right|=\ldots$ It follows that no new clauses can be added, that is, $\mathcal{K}_{n}=\mathcal{K}_{n+1}=\ldots$.
c) For $i \in \mathbb{N}$, let

$$
\mathcal{K}_{i}=\mathcal{K} \cup \bigcup_{j=1}^{i}\left\{\left\{A_{0}, \neg A_{j+1}\right\}\right\} .
$$

Graphically, the constructed sequence of derivations looks as follows:

More formally, we clearly have $\mathcal{K}_{0}=\mathcal{K}$ and $\mathcal{K}_{i} \neq \mathcal{K}_{i-1}$ for all $i>0$. What is left to show is that for all $i>0$, there exist $K^{\prime}, K^{\prime \prime} \in \mathcal{K}_{i-1}$ and K, such that $\left\{K^{\prime}, K^{\prime \prime}\right\} \vdash_{\text {res }} K$ and $\mathcal{K}_{i}=\mathcal{K}_{i-1} \cup\{K\}$ (where K is the new clause, $K \notin \mathcal{K}_{i-1}$). Indeed, for any $i>0$, we can take $K^{\prime}=\left\{A_{0}, \neg A_{i}\right\} \in \mathcal{K}_{i-1}$ and $K^{\prime \prime}=\left\{A_{i}, \neg A_{i+1}\right\} \in \mathcal{K} \subseteq \mathcal{K}_{i-1}$. Then we have $\left\{K^{\prime}, K^{\prime \prime}\right\} \vdash_{\text {res }}\left\{A_{0}, \neg A_{i+1}\right\}$ (so $K=\left\{A_{0}, \neg A_{i+1}\right\}$) and

$$
\begin{aligned}
\mathcal{K}_{i} & =\mathcal{K} \cup \bigcup_{j=1}^{i}\left\{\left\{A_{0}, \neg A_{j+1}\right\}\right\} \\
& =\mathcal{K} \cup \bigcup_{j=1}^{i-1}\left\{\left\{A_{0}, \neg A_{j+1}\right\}\right\} \cup\left\{\left\{A_{0}, \neg A_{i+1}\right\}\right\} \\
& =\mathcal{K}_{i-1} \cup\{K\} .
\end{aligned}
$$

