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14.1 Prenex Normal Form

i) An equivalent formula in the prenex normal form is

Fy (—P(y) vV Qx)).
To find this formula, we proceed as follows:

1. Identify the free variables: (Vz P(z)) — Q(z).

2. Transform the formula into the rectified form by renaming the bound variables:
(Vy P(y)) = Q(=).
3. Apply Lemma 6.8:

(Vy P(y)) = Q(z) = =(Yy P(y)) v Q(z) (def. —)
= (3y~P(y)) vV Q=) (Lem. 6.8, 1))
= Jy (—-P(y) vV Q(z)) (Lem. 6.8, 10))

ii) An equivalent formula in the prenex normal form is
Vz3yItFuvo ((P(z,9(y),z) V-Q(t)) A R(f(v,u), u))
To find this formula, we proceed as follows:

1. Identify the free variables:
Vz3y (P(z, 9(y), z) V =Vx Q(x)) A =Vz3z ~R(f(x, 2), 2).

2. Transform the formula into the rectified form by renaming the bound variables:
Vz3y (P(x,g(y),z) V=Vt Q(t)) A —~Vudv R(f(v,u),u).

3. Apply Lemma 6.8.

Vz3y (P(x,9(y),z) V-Vt Q(t)) A =VuIv - R(f(v,u),u)
=Vz3dy (P(x,9(y),2) VIt =Q(t)) A Juvv R(f(v,u),u) (Lem. 6.8, 1),2))
= Vz3yItIuvo ((P(z,9(y), z) V-Q(t)) A R(f(v,u),u)) (Lem.6.8,7) to 10))



14.2 The Barber of Ziirich
By Theorem 6.13,
F =—3avy (P(y,z) < ~P(y,y))

is a tautology, that is, each interpretation A suitable for F is a model for F'. Consider the
following interpretation .A: the universe U+ is the set of all people in Ziirich and P4(z, y) =
1 if and only if the person y shaves the person x. In this interpretation, the formula F
denotes the statement “There does not exist a person x (the barber) in Ziirich, such that for
every person y in Ziirich, x shaves y if and only if y does not shave himself”.

14.3 The Exercise 14

a) The statement can be described as follows:

F = 3z (P(z) — Vy P(y))

b) F =3z (-P(z) V Vy P(y)) (def. —)
= (3 ~P(z)) V (Vy P(y)) (Lem. 6.8 10))
= (Va P(z)) vV (Vy P(y)) (Lem. 6.8 1))
=—(Vz P(z)) vV (Va P(z)) (Lem. 6.10)
=T (Lem. 6.1 11))

c) Let U be the set of all people in a pub, and let P be the predicate, which is true if a
given person drinks. F' can now be interpreted as follows:

“There is a person in the pub, such that if this person drinks, then everyone
drinks.”

Let U be the set of all professors at ETH, and let P be the predicate, which is true if a
professor understands his or her field. F can be interpreted as follows:

“There is a professor at ETH, such that if he or she understands their field,
then all professors understand their fields.”

14.4 Formulas and Statements

a) This expression is a formula.

b) This is a statement about the formulas Vz P(x) and P(z).
The statement is true. To prove this, take any interpretation A suitable for both
Vx P(x) and P(x) (that is, A defines P and the free variable x), that is a model for
Vx P(x). Since A(Vx P(r)) = 1, it follows that A,_,,;(P(z)) = 1 for all u € UA.

Hence, no matter which u € U is assigned to the free occurrence of = by A, we have
A(P(z)) = 1. Therefore, A is also a model for P(x).

¢) This expression is not syntactically correct, since = can only be used between formu-
las and P(x) = P(x) is a statement, not a formula.



d) This is a statement about formulas.

The statement is false. As a counterexample, consider the structure: U4 = {0,1},
PAz) =1 <=z = 1,24 =1, f4(x) = 1, a* = 0. Then we have A(P(z)) = 1 and
A(P(f(a))) = 1,but A(P(a)) = 0.

14.5 Calculi

a) The following rules are correct: Ry, Ry, R4 and Rg.

To show this, for each rule R we consider the statement M = H for a set M and a
formula H. If this statement is true for any M and H such that M Fr H, then the
rule is correct. We show M |= H by drawing a function table and checking that the
truth value of H is 1 whenever the truth values of all formulas in M are 1. A rule is
incorrect if the statement M = H is false. We show this by giving a counterexample
(the counterexamples are the rows in the corresponding function tables, printed in

bold).
F|G|F|FVG F|G|FAG|F F|G|~(FAG)|-FA-G
oo o ojof o Jo 00 1 1
Ri: 0]1(0] 1 Ry: O[1| 0 |0 Ry 0]1 1 0
Ljof1]| 1 1joj o |1 1(0 1 0
Lj1|1] 1 11| 1 |1 1)1 0 0
F|G|F|F—-G|G F|G|F—G|-F—-G F|G|FAG
ofoffo[ 1 o 010 1 1 ofof o
R41 0 1 0 1 1 R5Z 0|1 1 0 RGZ 0 1 0
Ljoff1| o |o 10 0 1 1jof o
111} 1 |1 1|1 1 1 1j1] 1

b) We have K = {R1, Ra, R4, Rg}. The derivation is the following;:

{B/\A} FRQB

{B}FRr, BVC

{BvC,(BVC)— D}Fp, D
{A/\B} |—R2A

{D,A} |—R6D/\A
{DNA,(DNA)— C}tpg, C
{AANB,C} s, ANBAC
{ANBANC,D} R, ANBANCNAD

¢) The calculus K’ = { Ry, R4} is not complete. As a counterexample, consider the set
My = {A A B} and the formula H = B A A. We have AA B = B A A. However, H
cannot be derived from M. Indeed, to M, one can only apply Ry with F' = A and
G = B, obtaining the set M; = {A A B, A}. But no new formulas can be derived from
M.

d) For example, the following calculus K" = {R} with & Fr F is complete but not
sound.



In the calculus K, one can derive exactly all formulas. Hence, it is clearly complete.
It is also clearly not sound, since for example, the formula A A B can be derived and
it is not a tautology.

14.6 Resolution
a) i) The clauses are: {A, B}, {—E}, {—-B,D},{-D, E},{—-A, B}.
{_‘DvE} {_'E} {_'BvD} {AvB} {_‘A’B}

NS NS
{=D} ///// {B}
AN
15 /
\@

Hence, the formula is not satisfiable.

ii) The formula G = (-BA—-C A D)V (-BA-D)V (C A D)V B is a tautology if
and only if

-G =(BVCV-D)AN(BVD)AN(—=CV-D)A(-B)
is not satisfiable. We show this, using the resolution calculus:

{B,C,-D} {-C,-D} {B,D} {-B}

N /
{B7_‘D}
AN

{B}
AN

%}

iii) Let (M) = {{—A,C},{A,~B}, {A, B}} be the set of clauses, corresponding to
the set M. The set of clauses corresponding to —H is K(—H) = {—A,~C} We
show that C(M) U K(—H) is unsatisfiable.

{A,-B} {4,B} {-A,C} {-A4,-C}
NS N/

{A} {—A}
\@/

b) There is only a finite number of atomic formulas in K. Let k denote their number.
Since in a clause an atomic formula can either: appear plain, appear negated, ap-
pear in both forms or not appear at all, the number of possible clauses that can
be derived from K is 4*. Now for all i > 0, we have K; C K;41. It follows that
ICi] < |Kit1|, which, together with the fact that |[K;| < 4k, implies that for some



)

n > 0, we have |IC,,| = |[K,11] = ... It follows that no new clauses can be added, that
iS,ICn:ICn+1 =....

Fori € IN, let 4
Ki=KulJ{{40,~4;;1}}.
j=1

Graphically, the constructed sequence of derivations looks as follows:

{Ao,—A1} {A1,-Ax} {Ag,-A3} {As, A4}

NS
{Ao, ~ A2}
AN

{Ap, A3}

AN
{A07 _'A4}

N

More formally, we clearly have Ky = K and K; # K;_; for all ¢ > 0. What is left to
show is that for all i > 0, there exist K/, K" € K;_; and K, such that { K/, K"} t-es K
and K; = K;—1 U {K} (where K is the new clause, K ¢ K;_1). Indeed, for any i > 0,
we can take K’ = {Ag,-A;} € Ki—1 and K" = {A4;,-A;11} € K C K;—1. Then we
have {K/, K”} l_res {A(), _‘Ai—l-l} (SO K = {Ao, ﬂAH_l}) and

Ki =K U {{40,~4;1}}

Jj=1

=KU O {{Ao, _\Aj+1}} U {{A07_‘Ai+1}}

j=1
=K,_1U {K}
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