Diskrete Mathematik

Solution 13

13.1 Free Variables

i) $\forall x \forall y \ (P(x, y) \lor P(x, \underline{z}))$

- ii) $(\forall x (\exists x P(x) \land P(x)) \lor P(\underline{x}))$ In the first occurrence of P(x), x is bound by $\exists x$ and in the second occurrence it is bound by $\forall x$.
- iii) There are no free variables in this formula.

13.2 Interpretations

a) i) A is a model for F, because for all positive natural numbers x, y, z we have:

$$x \mid xy \land y \mid xy \land (y \nmid x \to yz \nmid x).$$

ii) A is not a model for F, because there exist positive natural numbers x, y, z, for which the following does not hold:

$$x \mid x^y \land y \mid x^y \land (y \nmid x \to y^z \nmid x).$$

The counterexample is x = 2, y = 3 (note that $y \nmid x^y$).

iii) \mathcal{A} is a model for *F*, because for all subsets *A*, *B*, *C* of \mathbb{N} we have:

 $A \cap B \subseteq A \land A \cap B \subseteq B \land (A \not\subseteq B \to A \not\subseteq B \cap C).$

- **b)** There are many correct solutions. Below we give an example.
 - i) The structure \mathcal{A} that defines only the universe: $U^{\mathcal{A}} = \{0\}$.
 - ii) The structure \mathcal{A} with $U^{\mathcal{A}} = \{0\}$ and $P^{\mathcal{A}}(0,0) = 0$. \mathcal{A} is not a model, because $\forall x \exists y \ P(x,y)$ is false (since P(x,y) is always false).
 - iii) The structure \mathcal{A} with $U^{\mathcal{A}} = \mathbb{Z}_3$ and $P^{\mathcal{A}}(x, y) = 1$ if and only if $x + 1 \equiv_3 y$. \mathcal{A} is a model for G, because (1) for any x there exists a $y = R_3(x+1)$ such that $x+1 \equiv_3 y$ and similarly for any y there exists an $x = R_3(y-1)$ such that $x + 1 \equiv_3 y$, and (2) if $x + 1 \equiv_3 y$ then $y + 1 \equiv_3 x + 2 \neq_3 x$.

13.3 Predicate Logic with Equality

- a) An interpretation \mathcal{A} is a model for F if and only if $|U^{\mathcal{A}}| = 1$. If $|U^{\mathcal{A}}| = 1$, then clearly for all elements x, y of the universe, we have x = y and \mathcal{A} is a model for F. On the other hand, if $U^{\mathcal{A}}$ contains at least two different elements, then \mathcal{A} is not a model, because there exists x and y such that $\neg(x = y)$.
- **b)** An interpretation \mathcal{A} is a model for G if and only if $|U^{\mathcal{A}}| > 1$. If $|U^{\mathcal{A}}| > 1$, then there exist two different elements x, y of the universe and \mathcal{A} is a model for G. On the other hand, if $|U^{\mathcal{A}}| = 1$, then \mathcal{A} is not a model, because for all x, y, we have x = y.
- c) An example of such formula *H* is $\exists x \exists y \exists z (\neg(x = y) \land \neg(y = z) \land \neg(x = z))$. If $|U^{\mathcal{A}}| \geq 3$, then there exist three different elements x, y, z of the universe. These elements satisfy $\neg(x = y) \land \neg(y = z) \land \neg(x = z)$. If $|U^{\mathcal{A}}| < 3$, then, by the pigeonhole principle, at least two among three elements chosen from the universe must be equal. Hence, at least one of $\neg(x = y), \neg(y = z)$ and $\neg(x = z)$ must be false and $\mathcal{A}(H) = 0$.

13.4 Statements About Formulas

a) The statement is true.

Proof. Let \mathcal{A} be any interpretation suitable for both $\forall x \ (F \land G)$ and $(\forall x \ F) \land G$, such that $\mathcal{A} \ (\forall x \ (F \land G)) = 1$. According to the semantics of \forall , we have $\mathcal{A}_{[x \to u]}(F \land G) = 1$ for all $u \in U$. According to the semantics of \land , we further have (1) $\mathcal{A}_{[x \to u]}(F) = 1$ for all $u \in U$ and (2) $\mathcal{A}_{[x \to u]}(G) = 1$ for all $u \in U$.

The fact (1) implies (3) $\mathcal{A}(\forall x F) = 1$, according to the semantics of \forall . Furthermore, note that if x appears free in G, then it also appears free in $(\forall x F) \land G$, and since \mathcal{A} is suitable for $(\forall x F) \land G$, it must assign a value to x. We now define u^* as follows: if x appears free in G, then u^* is the value assigned to x by \mathcal{A} , else u^* is arbitrary. By the definition of u^* , we have $\mathcal{A}_{[x \to u^*]}(G) = \mathcal{A}(G)$, so by (2), we have (4) $\mathcal{A}(G) = 1$. The facts (3) and (4) imply that $\mathcal{A}((\forall x F) \land G) = 1$.

b) The statement is false.

Counterexample. Let F = P(x) and G = Q(x). Let \mathcal{A} be the interpretation with the universe $U^{\mathcal{A}} = \{0, 1\}$, which defines:

- $P^{\mathcal{A}}(0) = 1$ and $P^{\mathcal{A}}(1) = 1$
- $Q^{\mathcal{A}}(0) = 1$ and $Q^{\mathcal{A}}(1) = 0$
- $x^{\mathcal{A}} = 1$

We then have $\mathcal{A}(\exists x \ (P(x) \land Q(x))) = 1$, because $\mathcal{A}_{[x \to 0]}(P(x) \land Q(x)) = 1$. However, $\mathcal{A}((\exists x \ P(x)) \land Q(x)) = 0$, because $\mathcal{A}(Q(x)) = 0$.

13.5 More Statements About Formulas

a) The statement is true. Let \mathcal{A} be any interpretation suitable for $\forall x \ (F \rightarrow G)$ and $(\forall x \ F) \rightarrow (\forall x \ G)$. Assume $\mathcal{A}(\forall x \ (F \rightarrow G)) = 1$. Case distinction:

- $\mathcal{A}(\forall x F) = 0$. Then, $\mathcal{A}(\neg(\forall x F)) = 1$.
- $\mathcal{A}(\forall x F) = 1$. Let $u \in U^{\mathcal{A}}$ be arbitrary. We have $\mathcal{A}_{[x \to u]}(F) = 1$. Moreover,

$$\begin{split} \mathcal{A}(\forall x \; (F \to G)) &= 1 \\ \Longrightarrow \mathcal{A}(\forall x \; (\neg F \lor G)) &= 1 & (\text{def.} \to) \\ \Longrightarrow \mathcal{A}_{[x \to u]}(\neg F \lor G) &= 1 & (\text{sem.} \; \forall) \\ \Longrightarrow \mathcal{A}_{[x \to u]}(\neg F) &= 1 \text{ or } \mathcal{A}_{[x \to u]}(G) &= 1 & (\text{sem.} \; \lor) \\ \Longrightarrow \mathcal{A}_{[x \to u]}(F) &= 0 \text{ or } \mathcal{A}_{[x \to u]}(G) &= 1 & (\text{sem.} \; \neg) \\ \Longrightarrow \mathcal{A}_{[x \to u]}(G) &= 1. & (\mathcal{A}_{[x \to u]}(F) &= 1) \end{split}$$

Since *u* was arbitrary, we obtain $\mathcal{A}(\forall x G) = 1$.

Combining both cases, we obtain $\mathcal{A}((\forall x \ F) \rightarrow (\forall x \ G)) = \mathcal{A}(\neg(\forall x \ F) \lor (\forall x \ G)) = 1$ by the semantics of \lor . Hence, $\forall x \ (F \rightarrow G) \models (\forall x \ F) \rightarrow (\forall x \ G)$.

b) The statement is false. As a counterexample, consider the formulas F = P(x) and $G = \neg P(x)$, and the interpretation \mathcal{A} with $U^{\mathcal{A}} = \{0, 1\}, P^{\mathcal{A}}(x) = 1 \iff x = 1$. Observe that $\mathcal{A}(\forall x F) = 0$ since $\mathcal{A}_{[x \to 0]}(P(x)) = 0$ and therefore $\mathcal{A}(\neg(\forall x F)) = 1$. Thus, the semantics of \lor implies $\mathcal{A}((\forall x F) \to (\forall x G)) = \mathcal{A}(\neg(\forall x F) \lor (\forall x G)) = 1$. Moreover, we have $\mathcal{A}_{[x \to 1]}(\neg F \lor G) = \mathcal{A}_{[x \to 1]}(\neg P(x) \lor \neg P(x)) = \mathcal{A}_{[x \to 1]}(\neg P(x)) = 0$ (as $\mathcal{A}_{[x \to 1]}(P(x)) = 1$). Thus, $\mathcal{A}(\forall x (F \to G)) = \mathcal{A}(\forall x (\neg F \lor G)) = 0$. Hence, $(\forall x F) \to (\forall x G) \not\models \forall x (F \to G)$.