Diskrete Mathematik

Solution 13

13.1 Free Variables

i) $\forall x \forall y(P(x, y) \vee P(x, \underline{\mathbf{z}}))$
ii) $(\forall x(\exists x P(x) \wedge P(x)) \vee P(\underline{\mathbf{x}}))$

In the first occurence of $P(x), x$ is bound by $\exists x$ and in the second occurrence it is bound by $\forall x$.
iii) There are no free variables in this formula.

13.2 Interpretations

a) i) \mathcal{A} is a model for F, because for all positive natural numbers x, y, z we have:

$$
x|x y \wedge y| x y \wedge(y \nmid x \rightarrow y z \nmid x) .
$$

ii) \mathcal{A} is not a model for F, because there exist positive natural numbers x, y, z, for which the following does not hold:

$$
x\left|x^{y} \wedge y\right| x^{y} \wedge\left(y \nmid x \rightarrow y^{z} \nmid x\right) .
$$

The counterexample is $x=2, y=3$ (note that $y \nmid x^{y}$).
iii) \mathcal{A} is a model for F, because for all subsets A, B, C of \mathbb{N} we have:

$$
A \cap B \subseteq A \wedge A \cap B \subseteq B \wedge(A \nsubseteq B \rightarrow A \nsubseteq B \cap C)
$$

b) There are many correct solutions. Below we give an example.
i) The structure \mathcal{A} that defines only the universe: $U^{\mathcal{A}}=\{0\}$.
ii) The structure \mathcal{A} with $U^{\mathcal{A}}=\{0\}$ and $P^{\mathcal{A}}(0,0)=0$. \mathcal{A} is not a model, because $\forall x \exists y P(x, y)$ is false (since $P(x, y)$ is always false).
iii) The structure \mathcal{A} with $U^{\mathcal{A}}=\mathbb{Z}_{3}$ and $P^{\mathcal{A}}(x, y)=1$ if and only if $x+1 \equiv_{3} y$. \mathcal{A} is a model for G, because (1) for any x there exists a $y=R_{3}(x+1)$ such that $x+1 \equiv_{3} y$ and similarly for any y there exists an $x=R_{3}(y-1)$ such that $x+1 \equiv_{3} y$, and (2) if $x+1 \equiv_{3} y$ then $y+1 \equiv_{3} x+2 \not \equiv \equiv_{3} x$.

13.3 Predicate Logic with Equality

a) An interpretation \mathcal{A} is a model for F if and only if $\left|U^{\mathcal{A}}\right|=1$.

If $\left|U^{\mathcal{A}}\right|=1$, then clearly for all elements x, y of the universe, we have $x=y$ and \mathcal{A} is a model for F. On the other hand, if $U^{\mathcal{A}}$ contains at least two different elements, then \mathcal{A} is not a model, because there exists x and y such that $\neg(x=y)$.
b) An interpretation \mathcal{A} is a model for G if and only if $\left|U^{\mathcal{A}}\right|>1$.

If $\left|U^{\mathcal{A}}\right|>1$, then there exist two different elements x, y of the universe and \mathcal{A} is a model for G. On the other hand, if $\left|U^{\mathcal{A}}\right|=1$, then \mathcal{A} is not a model, because for all x, y, we have $x=y$.
c) An example of such formula H is $\exists x \exists y \exists z(\neg(x=y) \wedge \neg(y=z) \wedge \neg(x=z))$.

If $\left|U^{\mathcal{A}}\right| \geq 3$, then there exist three different elements x, y, z of the universe. These elements satisfy $\neg(x=y) \wedge \neg(y=z) \wedge \neg(x=z)$.
If $\left|U^{\mathcal{A}}\right|<3$, then, by the pigeonhole principle, at least two among three elements chosen from the universe must be equal. Hence, at least one of $\neg(x=y), \neg(y=z)$ and $\neg(x=z)$ must be false and $\mathcal{A}(H)=0$.

13.4 Statements About Formulas

a) The statement is true.

Proof. Let \mathcal{A} be any interpretation suitable for both $\forall x(F \wedge G)$ and $(\forall x F) \wedge G$, such that $\mathcal{A}(\forall x(F \wedge G))=1$. According to the semantics of \forall, we have $\mathcal{A}_{[x \rightarrow u]}(F \wedge G)=1$ for all $u \in U$. According to the semantics of \wedge, we further have (1) $\mathcal{A}_{[x \rightarrow u]}(F)=1$ for all $u \in U$ and (2) $\mathcal{A}_{[x \rightarrow u]}(G)=1$ for all $u \in U$.
The fact (1) implies (3) $\mathcal{A}(\forall x F)=1$, according to the semantics of \forall. Furthermore, note that if x appears free in G, then it also appears free in $(\forall x F) \wedge G$, and since \mathcal{A} is suitable for $(\forall x F) \wedge G$, it must assign a value to x. We now define u^{*} as follows: if x appears free in G, then u^{*} is the value assigned to x by \mathcal{A}, else u^{*} is arbitrary. By the definition of u^{*}, we have $\mathcal{A}_{\left[x \rightarrow u^{*}\right]}(G)=\mathcal{A}(G)$, so by (2), we have (4) $\mathcal{A}(G)=1$.
The facts (3) and (4) imply that $\mathcal{A}((\forall x F) \wedge G)=1$.
b) The statement is false.

Counterexample. Let $F=P(x)$ and $G=Q(x)$. Let \mathcal{A} be the interpretation with the universe $U^{\mathcal{A}}=\{0,1\}$, which defines:

- $P^{\mathcal{A}}(0)=1$ and $P^{\mathcal{A}}(1)=1$
- $Q^{\mathcal{A}}(0)=1$ and $Q^{\mathcal{A}}(1)=0$
- $x^{\mathcal{A}}=1$

We then have $\mathcal{A}(\exists x(P(x) \wedge Q(x)))=1$, because $\mathcal{A}_{[x \rightarrow 0]}(P(x) \wedge Q(x))=1$. However, $\mathcal{A}((\exists x P(x)) \wedge Q(x))=0$, because $\mathcal{A}(Q(x))=0$.

13.5 More Statements About Formulas

a) The statement is true. Let \mathcal{A} be any interpretation suitable for $\forall x(F \rightarrow G)$ and $(\forall x F) \rightarrow(\forall x G)$. Assume $\mathcal{A}(\forall x(F \rightarrow G))=1$. Case distinction:

- $\mathcal{A}(\forall x F)=0$. Then, $\mathcal{A}(\neg(\forall x F))=1$.
- $\mathcal{A}(\forall x F)=1$. Let $u \in U^{\mathcal{A}}$ be arbitrary. We have $\mathcal{A}_{[x \rightarrow u]}(F)=1$. Moreover,

$$
\begin{align*}
& \mathcal{A}(\forall x(F \rightarrow G))=1 \\
& \Longrightarrow \mathcal{A}(\forall x(\neg F \vee G))=1 \\
& \Longrightarrow \mathcal{A}_{[x \rightarrow u]}(\neg F \vee G)=1 \\
& \Longrightarrow \mathcal{A}_{[x \rightarrow u]}(\neg F)=1 \text { or } \mathcal{A}_{[x \rightarrow u]}(G)=1 \\
& \Longrightarrow \mathcal{A}_{[x \rightarrow u]}(F)=0 \text { or } \mathcal{A}_{[x \rightarrow u]}(G)=1 \\
& \Longrightarrow \mathcal{A}_{[x \rightarrow u]}(G)=1 \text {. } \\
& \text { (sem. } \forall \text {) } \\
& \text { (sem. v) } \\
& \text { (sem. ᄀ) }
\end{align*}
$$

Since u was arbitrary, we obtain $\mathcal{A}(\forall x G)=1$.
Combining both cases, we obtain $\mathcal{A}((\forall x F) \rightarrow(\forall x G))=\mathcal{A}(\neg(\forall x F) \vee(\forall x G))=1$ by the semantics of \vee. Hence, $\forall x(F \rightarrow G) \models(\forall x F) \rightarrow(\forall x G)$.
b) The statement is false. As a counterexample, consider the formulas $F=P(x)$ and $G=\neg P(x)$, and the interpretation \mathcal{A} with $U^{\mathcal{A}}=\{0,1\}, P^{\mathcal{A}}(x)=1 \Longleftrightarrow x=1$.
Observe that $\mathcal{A}(\forall x F)=0$ since $\mathcal{A}_{[x \rightarrow 0]}(P(x))=0$ and therefore $\mathcal{A}(\neg(\forall x F))=1$. Thus, the semantics of \vee implies $\mathcal{A}((\forall x F) \rightarrow(\forall x G))=\mathcal{A}(\neg(\forall x F) \vee(\forall x G))=1$.
Moreover, we have $\mathcal{A}_{[x \rightarrow 1]}(\neg F \vee G)=\mathcal{A}_{[x \rightarrow 1]}(\neg P(x) \vee \neg P(x))=\mathcal{A}_{[x \rightarrow 1]}(\neg P(x))=0$ (as $\left.\mathcal{A}_{[x \rightarrow 1]}(P(x))=1\right)$. Thus, $\mathcal{A}(\forall x(F \rightarrow G))=\mathcal{A}(\forall x(\neg F \vee G))=0$.
Hence, $(\forall x F) \rightarrow(\forall x G) \forall \vDash \forall x(F \rightarrow G)$.

