Diskrete Mathematik Solution 12

12.1 Proof Systems ($\star *$)

A proof of a statement $\left(y_{A}, y_{B}, k_{A B}\right)$ will be the discrete logarithm x_{A} of y_{A}. Formally, $\mathcal{P}=\mathbb{N}$ and $\phi\left(\left(y_{A}, y_{B}, k_{A B}\right), x_{A}\right)=1$ if and only if $x_{A} \in \mathbb{Z}_{n}$ and $g^{x_{A}}=y_{A}$ and $y_{B}^{x_{A}}=k_{A B}$.
Completeness: Assume $\tau\left(\left(y_{A}, y_{B}, k_{A B}\right)\right)=1$. There exist unique $x_{A}, x_{B} \in \mathbb{Z}_{n}$ (the secret keys chosen by Alice and Bob) such that $g^{x_{A}}=y_{A}$ and $g^{x_{B}}=y_{B}$. Since the statement is true, we also have $k_{A B}=g^{x_{A} x_{B}}=y_{B}^{x_{A}}$. Hence, for this x_{A} we have $\phi\left(\left(y_{A}, y_{B}, k_{A B}\right), x_{A}\right)=1$. Soundness: Assume $\phi\left(\left(y_{A}, y_{B}, k_{A B}\right), x_{A}^{\prime}\right)=1$. Let $x_{B} \in \mathbb{Z}_{n}$ be (unique) such that $g^{x_{B}}=$ y_{B}. The verification ϕ guarantees that $k_{A B}=y_{B}^{x_{A}^{\prime}}=g^{x_{A}^{\prime} x_{B}}$ and $g^{x_{A}^{\prime}}=y_{A}$ and $x_{A}^{\prime} \in$ \mathbb{Z}_{n}. Hence, $k_{A B}$ is the secret key resulting from the Diffie-Hellman protocol where Alice chooses x_{A}^{\prime} and Bob chooses x_{B}.

12.2 A Special Calculus for Propositional Logic

a) The calculus is sound.
b) We now formally derive $A \rightarrow C$ from $\{A \rightarrow B, B \rightarrow C\}$, using the given derivation rules.

$$
\begin{array}{rll}
\varnothing & \vdash_{R_{2}} & (B \rightarrow C) \rightarrow(A \rightarrow(B \rightarrow C)) \\
\{(B \rightarrow C) \rightarrow(A \rightarrow(B \rightarrow C)), B \rightarrow C\} & \vdash_{R_{1}} & A \rightarrow(B \rightarrow C) \\
\varnothing & \vdash_{R_{4}} & (A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)) \\
\{(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)), A \rightarrow(B \rightarrow C)\} & \vdash_{R_{1}} & (A \rightarrow B) \rightarrow(A \rightarrow C) \\
\{(A \rightarrow B) \rightarrow(A \rightarrow C), A \rightarrow B\} & \vdash_{R_{1}} & A \rightarrow C
\end{array}
$$

12.3 Models and Satisfiability

a) Consider the function table of F :

A	B	C	$\neg A \vee B$	$\neg C \wedge \neg A$	$B \rightarrow(\neg C \wedge \neg A)$	$A \vee C$	F
0	0	0	1	1	1	0	0
0	0	1	1	0	1	1	1
0	1	0	1	1	1	0	0
0	1	1	1	0	0	1	0
1	0	0	0	0	1	1	0
1	0	1	0	0	1	1	0
1	1	0	1	0	0	1	0
1	1	1	1	0	0	1	0

The set of models for F contains all truth assignments \mathcal{A}, such that $\mathcal{A}(A)=\mathcal{A}(B)=0$ and $\mathcal{A}(C)=1$.

Consider now the function table of G :

A	B	C	$\neg(A \rightarrow B)$	$C \rightarrow A$	G
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	1	0	1	1

The set of models for G contains all truth assignments \mathcal{A}, such that $\mathcal{A}(A)=1$ and all truth assignments \mathcal{A}, such that $\mathcal{A}(C)=0$.
The formulas are not equivalent, since the sets are not the same. G is not the consequence of F, because the set of models for F is not a subset of the set of models for G. Similarly F is not a consequence of G.
b) The statement is false. A counterexample is $F=A \vee \neg A$ and $G=B \vee \neg B$. Of course, F and G have no common atomic formulas. However, by Lemma 6.1 11), $A \vee \neg A \equiv \top \equiv B \vee \neg B$.
c) The statement is false. A counterexample in propositional logic is $F_{1}=A$ and $F_{2}=$ $A \wedge \neg A . F_{1}$ and $F_{1} \rightarrow F_{2}$ are both satisfiable ($F_{1} \rightarrow F_{2}$ is true for all interpretations \mathcal{A} that assign $\mathcal{A}\left(F_{1}\right)=0$). However, F_{2} is clearly not satisfiable.

12.4 Satisfiability

a) The set M is not satisfiable. To show this, assume that \mathcal{A} is a model for M. Since $\neg A \in M$, we have $\mathcal{A}(\neg A)=1$ and thus $\mathcal{A}(A)=0$. Moreover, we have $B \wedge C \in M$, and therefore $\mathcal{A}(B \wedge C)=1$, which implies that $\mathcal{A}(C)=1$.
Since $\neg A \rightarrow \neg C \in M$, we also have $\mathcal{A}(\neg A \rightarrow \neg C)=1$, so $\mathcal{A}(\neg \neg A \vee \neg C)=\mathcal{A}(A \vee$ $\neg C)=1$, which implies $\mathcal{A}(A)=1$ or $\mathcal{A}(C)=0$. This is a contradiction to $\mathcal{A}(A)=0$ and $\mathcal{A}(C)=1$.
b) A model for N is, for example, the truth assignment $\mathcal{A}:\left\{A_{1}, A_{2}, \ldots\right\} \rightarrow\{0,1\}$ that assigns $\mathcal{A}\left(A_{1}\right)=1$ and $\mathcal{A}\left(A_{i}\right)=0$ for $i>1$. (One could interpret the statement A_{i} as " i is less or equal to 1 ", for $i \in \mathbb{N}$.)

12.5 Normal Forms

a) The function table of $F=(\neg(A \rightarrow C)) \leftrightarrow(A \rightarrow B)$ is

A	B	C	$(\neg(A \rightarrow C))$	$(A \rightarrow B)$	F
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	0	1	0

Using the technique from the proof of Theorem 6.6, we can find an equivalent formula in CNF:
$(A \vee B \vee C) \wedge(A \vee B \vee \neg C) \wedge(A \vee \neg B \vee C) \wedge(A \vee \neg B \vee \neg C) \wedge(\neg A \vee B \vee C) \wedge(\neg A \vee \neg B \vee \neg C)$
and an equivalent formula in DNF:

$$
(A \wedge \neg B \wedge C) \vee(A \wedge B \wedge \neg C)
$$

$\begin{aligned} \text { b) } & (A \wedge \neg B) \vee(\neg A \wedge(C \wedge D)) & \\ \equiv & ((A \wedge \neg B) \vee \neg A) \wedge((A \wedge \neg B) \vee(C \wedge D)) & \mid 6) \\ \equiv & (\neg A \vee(A \wedge \neg B)) \wedge((A \wedge \neg B) \vee(C \wedge D)) & \mid 2) \\ \equiv & ((\neg A \vee A) \wedge(\neg A \vee \neg B)) \wedge((A \wedge \neg B) \vee(C \wedge D)) & \mid 6) \\ \equiv & ((\neg A \vee A) \wedge(\neg A \vee \neg B)) \wedge(((A \wedge \neg B) \vee C) \wedge((A \wedge \neg B) \vee D)) & \mid 2), 2) \\ \equiv & ((\neg A \vee A) \wedge(\neg A \vee \neg B)) \wedge((C \vee(A \wedge \neg B)) \wedge(D \vee(A \wedge \neg B))) & \mid 6), 6)\end{aligned}$
This formula is in CNF. Using equivalences 2), 11), 2) and 9), one can find a simpler formula equivalent to G, also in CNF:

$$
(\neg A \vee \neg B) \wedge(C \vee A) \wedge(C \vee \neg B) \wedge(D \vee A) \wedge(D \vee \neg B)
$$

12.6 Satisfiability

Assume that H is satisfiable and let \mathcal{A} be a model for H. We have (1) $\mathcal{A}\left(G_{1} \vee F_{1}\right)=1$, (2) $\mathcal{A}\left(G_{n+1} \vee \neg F_{n}\right)=1$ and (3) $\mathcal{A}\left(G_{i+1} \vee \neg F_{i} \vee F_{i+1}\right)=1$ for all $1 \leq i \leq n-1$.
Since \mathcal{A} is suitable for H, it is also suitable for $G_{1} \vee \cdots \vee G_{n+1}$. Assume towards a contradiction that $\mathcal{A}\left(G_{1} \vee \cdots \vee G_{n+1}\right)=0$. Then $\mathcal{A}\left(G_{1}\right)=\cdots=\mathcal{A}\left(G_{n+1}\right)=0$. We show by induction that $\mathcal{A}\left(F_{i}\right)=1$ for all $1 \leq i \leq n$. For the base case $i=1$, (1) and $\mathcal{A}\left(G_{1}\right)=0$ imply that $\mathcal{A}\left(F_{1}\right)=1$. Now assume $\mathcal{A}\left(F_{i}\right)=1$ for some $1 \leq i \leq n-1$. Then $\mathcal{A}\left(\neg F_{i}\right)=0$, and since also $\mathcal{A}\left(G_{i+1}\right)=0$, we have, $\mathcal{A}\left(F_{i+1}\right)=1$ by (3).
Therefore, $\mathcal{A}\left(F_{n}\right)=1$, so $\mathcal{A}\left(G_{n+1} \vee \neg F_{n}\right)=0$, which is a contradiction with (2).

