Diskrete Mathematik Solution 12

12.1 Proof Systems (* *)

A proof of a statement (y_A, y_B, k_{AB}) will be the discrete logarithm x_A of y_A . Formally, $\mathcal{P} = \mathbb{N}$ and $\phi((y_A, y_B, k_{AB}), x_A) = 1$ if and only if $x_A \in \mathbb{Z}_n$ and $g^{x_A} = y_A$ and $y_B^{x_A} = k_{AB}$. **Completeness:** Assume $\tau((y_A, y_B, k_{AB})) = 1$. There exist unique $x_A, x_B \in \mathbb{Z}_n$ (the secret keys chosen by Alice and Bob) such that $g^{x_A} = y_A$ and $g^{x_B} = y_B$. Since the statement is true, we also have $k_{AB} = g^{x_A x_B} = y_B^{x_A}$. Hence, for this x_A we have $\phi((y_A, y_B, k_{AB}), x_A) = 1$. **Soundness:** Assume $\phi((y_A, y_B, k_{AB}), x'_A) = 1$. Let $x_B \in \mathbb{Z}_n$ be (unique) such that $g^{x_B} = y_B$. The verification ϕ guarantees that $k_{AB} = y_B^{x'_A} = g^{x'_A x_B}$ and $g^{x'_A} = y_A$ and $x'_A \in \mathbb{Z}_n$. Hence, k_{AB} is the secret key resulting from the Diffie-Hellman protocol where Alice chooses x'_A and Bob chooses x_B .

12.2 A Special Calculus for Propositional Logic

- **a)** The calculus is sound.
- **b)** We now formally derive $A \to C$ from $\{A \to B, B \to C\}$, using the given derivation rules.

 $\begin{array}{rcl} \varnothing & \vdash_{R_2} & (B \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C)) \\ & \{(B \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C)), B \rightarrow C\} & \vdash_{R_1} & A \rightarrow (B \rightarrow C) \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ &$

12.3 Models and Satisfiability

a) Consider the function table of *F*:

A	B	C	$\neg A \lor B$	$\neg C \land \neg A$	$B \to (\neg C \land \neg A)$	$A \vee C$	F
0	0	0	1	1	1	0	0
0	0	1	1	0	1	1	1
0	1	0	1	1	1	0	0
0	1	1	1	0	0	1	0
1	0	0	0	0	1	1	0
1	0	1	0	0	1	1	0
1	1	0	1	0	0	1	0
1	1	1	1	0	0	1	0

The set of models for *F* contains all truth assignments A, such that A(A) = A(B) = 0and A(C) = 1.

Consider now the function table of *G*:

A	B	C	$\neg (A \rightarrow B)$	$C \to A$	G
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	1	0	1	1

The set of models for *G* contains all truth assignments A, such that A(A) = 1 and all truth assignments A, such that A(C) = 0.

The formulas are not equivalent, since the sets are not the same. G is not the consequence of F, because the set of models for F is not a subset of the set of models for G. Similarly F is not a consequence of G.

- **b)** The statement is false. A counterexample is $F = A \lor \neg A$ and $G = B \lor \neg B$. Of course, *F* and *G* have no common atomic formulas. However, by Lemma 6.1 11), $A \lor \neg A \equiv \top \equiv B \lor \neg B$.
- c) The statement is false. A counterexample in propositional logic is $F_1 = A$ and $F_2 = A \land \neg A$. F_1 and $F_1 \to F_2$ are both satisfiable ($F_1 \to F_2$ is true for all interpretations \mathcal{A} that assign $\mathcal{A}(F_1) = 0$). However, F_2 is clearly not satisfiable.

12.4 Satisfiability

a) The set M is not satisfiable. To show this, assume that A is a model for M. Since $\neg A \in M$, we have $A(\neg A) = 1$ and thus A(A) = 0. Moreover, we have $B \land C \in M$, and therefore $A(B \land C) = 1$, which implies that A(C) = 1.

Since $\neg A \rightarrow \neg C \in M$, we also have $\mathcal{A}(\neg A \rightarrow \neg C) = 1$, so $\mathcal{A}(\neg \neg A \lor \neg C) = \mathcal{A}(A \lor \neg C) = 1$, which implies $\mathcal{A}(A) = 1$ or $\mathcal{A}(C) = 0$. This is a contradiction to $\mathcal{A}(A) = 0$ and $\mathcal{A}(C) = 1$.

b) A model for *N* is, for example, the truth assignment $\mathcal{A} : \{A_1, A_2, \ldots\} \to \{0, 1\}$ that assigns $\mathcal{A}(A_1) = 1$ and $\mathcal{A}(A_i) = 0$ for i > 1. (One could interpret the statement A_i as "*i* is less or equal to 1", for $i \in \mathbb{N}$.)

12.5 Normal Forms

a) The function table of $F = (\neg(A \rightarrow C)) \leftrightarrow (A \rightarrow B)$ is

A	B	C	$\left(\neg(A \to C)\right)$	$(A \to B)$	F
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	0	1	0

Using the technique from the proof of Theorem 6.6, we can find an equivalent formula in CNF:

 $(A \lor B \lor C) \land (A \lor B \lor \neg C) \land (A \lor \neg B \lor C) \land (A \lor \neg B \lor \neg C) \land (\neg A \lor B \lor C) \land (\neg A \lor \neg B \lor \neg C)$

and an equivalent formula in DNF:

$$(A \land \neg B \land C) \lor (A \land B \land \neg C)$$

b)
$$(A \land \neg B) \lor (\neg A \land (C \land D))$$

$$\equiv ((A \land \neg B) \lor (\neg A) \land ((A \land \neg B) \lor (C \land D))$$

$$\equiv ((A \land \neg B) \lor (\neg A) \land ((A \land \neg B) \lor (C \land D))$$

$$\equiv ((\neg A \lor A) \land (\neg A \lor \neg B)) \land ((A \land \neg B) \lor (C \land D))$$

$$\equiv ((\neg A \lor A) \land (\neg A \lor \neg B)) \land (((A \land \neg B) \lor C) \land ((A \land \neg B) \lor D))$$

$$= ((\neg A \lor A) \land (\neg A \lor \neg B)) \land (((C \lor (A \land \neg B)) \land (D \lor (A \land \neg B)))$$

$$= (\neg A \lor A) \land (\neg A \lor \neg B) \land (C \lor A) \land (C \lor \neg B) \land (D \lor A) \land (D \lor \neg B)$$

$$= (0, 0) \land (0, 0) \land (0, 0) \land (0) \lor (0) \lor (0) \land (0) \lor (0) \lor (0) \land (0) \lor (0$$

This formula is in CNF. Using equivalences 2), 11), 2) and 9), one can find a simpler formula equivalent to *G*, also in CNF:

$$(\neg A \lor \neg B) \land (C \lor A) \land (C \lor \neg B) \land (D \lor A) \land (D \lor \neg B).$$

12.6 Satisfiability

Assume that *H* is satisfiable and let \mathcal{A} be a model for *H*. We have (1) $\mathcal{A}(G_1 \vee F_1) = 1$, (2) $\mathcal{A}(G_{n+1} \vee \neg F_n) = 1$ and (3) $\mathcal{A}(G_{i+1} \vee \neg F_i \vee F_{i+1}) = 1$ for all $1 \le i \le n-1$.

Since \mathcal{A} is suitable for H, it is also suitable for $G_1 \vee \cdots \vee G_{n+1}$. Assume towards a contradiction that $\mathcal{A}(G_1 \vee \cdots \vee G_{n+1}) = 0$. Then $\mathcal{A}(G_1) = \cdots = \mathcal{A}(G_{n+1}) = 0$. We show by induction that $\mathcal{A}(F_i) = 1$ for all $1 \leq i \leq n$. For the base case i = 1, (1) and $\mathcal{A}(G_1) = 0$ imply that $\mathcal{A}(F_1) = 1$. Now assume $\mathcal{A}(F_i) = 1$ for some $1 \leq i \leq n - 1$. Then $\mathcal{A}(\neg F_i) = 0$, and since also $\mathcal{A}(G_{i+1}) = 0$, we have, $\mathcal{A}(F_{i+1}) = 1$ by (3).

Therefore, $\mathcal{A}(F_n) = 1$, so $\mathcal{A}(G_{n+1} \vee \neg F_n) = 0$, which is a contradiction with (2).