Diskrete Mathematik Solution 11

11.1 Polynomials over a Field

a) In \mathbb{Z}_{7}, the multiplicative inverse of 5 is 3 , because $3 \cdot 5 \equiv_{7} 1$. Therefore, the first coefficient of the result is 3 . The rest of the computation proceeds analogously:

$$
\begin{gathered}
\begin{array}{c}
\left(\begin{array}{l}
\left.x^{5}+6 x^{2}+5\right) \\
-\left(x^{5}+6 x^{4}+3 x^{3}\right) \\
x^{4}+4 x^{3}+6 x^{2}+\quad+5
\end{array}\right. \\
\frac{-\left(x^{4}+6 x^{3}+3 x^{2}\right)}{5 x^{3}+3 x^{2}+\quad+5} \\
\frac{-\left(5 x^{3}+2 x^{2}+x\right)}{+x^{2}+6 x+5} \\
\text { Remainder: } \frac{-\left(x^{2}+6 x+3\right)}{2}
\end{array} \\
\hline
\end{gathered}
$$

b) The irreducible polynomials of degree 4 over $\operatorname{GF}(2)$ are $x^{4}+x^{3}+1, x^{4}+x+1$ and $x^{4}+x^{3}+x^{2}+x+1$.
We show this by eliminating all reducible polynomials of degree four. A polynomial $p(x)=x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ is reducible if it is divisible by a polynomial of degree one or two (if it is divisible by a polynomial of degree three, then it must also be divisible by one of degree one).
By Lemma 5.28, the polynomials $p(x)$ divisible by a polynomial of degree one are exactly those for which $p(0)=0$ or $p(1)=0$. Hence, we have to eliminate the polynomials for which $a_{0}=0$ or $a_{3}+a_{2}+a_{1}+a_{0}=1$. Remaining are the polynomials: $x^{4}+x^{3}+1, x^{4}+x+1, x^{4}+x^{2}+1$ and $x^{4}+x^{3}+x^{2}+x+1$.
Furthermore, over GF(2) there is only one irreducible polynomial of degree two, namely $x^{2}+x+1$ (the other polynomials: $x^{2}, x^{2}+1$ and $x^{2}+x$ can be eliminated in the same way we did above). Hence, we have to also eliminate $\left(x^{2}+x+1\right)^{2}=x^{4}+x^{2}+1$.
c) Since 2 is a double root, it follows that $a(x)=(x-2)^{2} b(x)$, where $b(x)$ is a polynomial of degree 2 . We know that $2=a(3)=(3-2)^{2} b(3), 3=a(4)=(4-2)^{2} b(4)$ and $5=$ $a(6)=(6-2)^{2} b(6)$. Hence, we have $b(3)=2, b(4)=3 \cdot 4^{-1}=6$ and $b(6)=5 \cdot 2^{-1}=6$. In order to determine $b(x)$, we apply Lagrange's interpolation:

$$
\begin{aligned}
b(x) & =2 \frac{(x-4)(x-6)}{(3-4)(3-6)}+6 \frac{(x-3)(x-6)}{(4-3)(4-6)}+6 \frac{(x-3)(x-4)}{(6-3)(6-4)} \\
& =3(x+3)(x+1)+4(x+4)(x+1)+(x+4)(x+3) \\
& =x^{2}+4 x+2
\end{aligned}
$$

Therefore, $a(x)=(x-2)^{2}\left(x^{2}+4 x+2\right)=x^{4}+4 x^{2}+x+1$ and $a(0)=1$.

11.2 The Ring $F[x]_{m(x)}$

a) The zero-divisors are those elements of $\mathrm{GF}(3)[x]_{x^{2}+2 x} \backslash\{0\}$ (that is, the non-zero polynomials of degree at most 1 with coefficients in \mathbb{Z}_{3}) which share a common factor (a polynomial of degree at least 1) with the modulus $x^{2}+2 x$. The factors of $x^{2}+2 x$ are x and $x+2$, so the zero-divisors are the multiples of x and $x+2$ of degree at most 1. These are $a x$ and $b(x+2)$ for $a, b \in \mathbb{Z}_{3}$. Hence, the zero-divisors are:

$$
x, 2 x, x+2,2 x+1 .
$$

b) We have

$$
\mathrm{GF}(3)[x]_{x^{2}+2}=\{0,1,2, x, x+1, x+2,2 x, 2 x+1,2 x+2\} .
$$

By Lemma 5.35,

$$
\operatorname{GF}(3)[x]_{x^{2}+2}^{*}=\left\{a(x) \in \operatorname{GF}(3)[x]_{x^{2}+2} \mid \operatorname{gcd}\left(a(x), x^{2}+2\right)=1\right\} .
$$

The task is to find all polynomials $a(x) \in \mathrm{GF}(3)[x]$ of degree at most one, such that $\operatorname{gcd}\left(a(x), x^{2}+2\right)=1$. Note first that over $\operatorname{GF}(3)$, we have $x^{2}+2=x^{2}-1=$ $(x+1)(x-1)=(x+1)(x+2)$. Hence, all polynomials $b(x)$ of degree at most one, for which $\operatorname{gcd}(b(x),(x+1)(x+2)) \neq 1$ are $u(x+1)$ and $v(x+2)$ for some $u, v \in \operatorname{GF}(3)$. These polynomials are: $x+1, x+2,2 x+2,2 x+1$ and 0 .
The polynomials of degree at most one that are left are in $\operatorname{GF}(3)[x]_{x^{2}+2}^{*}$. Therefore, $\mathrm{GF}(3)[x]_{x^{2}+2}^{*}=\{1,2, x, 2 x\}$.
c) The inverse of $x \in \mathrm{GF}(3)[x]_{x^{2}+2}^{*}$ is a polynomial $p(x) \in \mathrm{GF}(3)[x]_{x^{2}+2}^{*}$, such that $x \cdot p(x) \equiv_{x^{2}+2} 1$ (where 1 is the constant polynomial). Since all the polynomials in $\mathrm{GF}(3)[x]_{x^{2}+2}^{*}$ have degree at most 1 (Definition 5.34), we have $p(x)=a x+b$ for some $a, b \in \mathrm{GF}(3)$. Therefore, we only need to find a and b such that $x \cdot(a x+b) \equiv_{x^{2}+2} 1$. Note that

$$
x \cdot(a x+b) \equiv_{x^{2}+2} a x^{2}+b x \equiv_{x^{2}+2}-2 a+b x \equiv_{x^{2}+2} a+b x .
$$

It is now easy to see that $a+b x \equiv_{x^{2}+2} 1$ when $b=0$ and $a=1$. Hence, the inverse of the polynomial x is $p(x)=x$.

11.3 Extension Fields

Let $F=\mathbb{Z}_{5}[x]_{x^{2}+3}$.
a) The polynomial $a(x)=x^{2}+3 \in \mathbb{Z}_{5}[x]$ has no roots, because $a(0)=3, a(1)=4$, $a(2)=2, a(3)=2$, and $a(4)=4$. Since $a(x)$ has degree two, this implies that it is irreducible (Corollary 5.29). Therefore, F is a field (Theorem 5.36).
b) By Lemma 5.33 we have $|F|=5^{2}=25$, since $\left|\mathbb{Z}_{5}\right|=5$ and $x^{2}+3$ is of degree 2 . As F is a field, we have $F^{*}=F \backslash\{0\}$. Thus, $\left|F^{*}\right|=|F|-1=25-1=24$.
c) We have $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ for $a=3 x+2, b=4 x, c=3 x$, and $d=x+1$. Thus,

$$
\begin{aligned}
a d-b c & =(3 x+2)(x+1)-(4 x)(3 x) \\
& =\left(3 x^{2}+3 x+2 x+2\right)-12 x^{2} \\
& =-9 x^{2}+5 x+2 \\
& =x^{2}+2 \\
& \equiv{ }_{x^{2}+3} 2-3 \\
& =4 .
\end{aligned}
$$

We have $4^{-1} \equiv_{5} 4$. Therefore, we obtain

$$
\begin{aligned}
M^{-1} & =(a d-b c)^{-1} \cdot\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
& =4 \cdot\left(\begin{array}{cc}
x+1 & -4 x \\
-3 x & 3 x+2
\end{array}\right) \\
& =\left(\begin{array}{cc}
4 x+4 & 4 x \\
3 x & 2 x+3
\end{array}\right)
\end{aligned}
$$

11.4 Polynomials over Extension Fields ($\star \star$)

The elements of $\operatorname{GF}(2)[x]_{x^{2}+x+1}$ are $0,1, x$ and $x+1$. We first check whether any of these elements is a root of $a(y)$:

$$
\begin{aligned}
& a(0)=x \\
& a(1)=x+x+(x+1)+x=1 \\
& a(x)=x \cdot x^{3}+x \cdot x^{2}+(x+1) \cdot x+x=x^{4}+x^{3}+x^{2}=x^{2}\left(x^{2}+x+1\right)=0
\end{aligned}
$$

Since x is a root, $a(y)$ is divisible by $y-x \equiv_{2} y+x$.

$$
\begin{array}{cc}
x y^{3}+\quad x y^{2}+(x+1) y+x \quad: y+x=x y^{2}+y+1 \\
-\left(x y^{3}+(x+1) y^{2}\right) \\
\cline { 1 - 3 } y^{2}+(x+1) y+x \\
-\quad\left(y^{2}+\quad x y\right) \\
-\quad \begin{array}{r}
y+x \\
-\quad(y+x) \\
0
\end{array}
\end{array}
$$

In the first step of the division we used the fact that in $\operatorname{GF}(2)[x]_{x^{2}+x+1}$ we have $x^{2}=x+1$. We have $x y^{3}+x y^{2}+(x+1) y+x=(y+x)\left(x y^{2}+y+1\right)$. Let $b(y)=x y^{2}+y+1$. The only possible roots of $b(y)$ are x and $x+1$, because if 1 or 0 were roots of $b(y)$, they would also be roots of $a(y)$, which we already excluded.

$$
\begin{aligned}
& b(x)=x \cdot x^{2}+x+1=x^{3}+x+1=\left(x^{2}+x+1\right)(x+1)+x=x \\
& b(x+1)=x \cdot(x+1)^{2}+(x+1)+1=x^{3}=\left(x^{2}+x+1\right) \cdot(x+1)+1=1
\end{aligned}
$$

Since $\operatorname{deg}(b(y))=2$ and $b(y)$ has no roots, $b(y)$ is irreducible. Hence, the factorization of $a(y)$ is $a(y)=(y+x)\left(x y^{2}+y+1\right)$.

11.5 Secret Sharing

a) By Lemma 5.31 , the polynomial $a(x)$ is uniquely determined by the t values $s_{i}=$ $a\left(\alpha_{i}\right)$, known to the t monkeys. Hence, the monkeys can use the Lagrange's interpolation formula to reconstruct $a(x)$ and the secret code a_{0}.
b) There are q possibilities for the secret a_{0}. Without loss of generality, consider the clan consisting of monkeys M_{1}, \ldots, M_{t-1} with shares s_{1}, \ldots, s_{t-1}. By Lemma 5.31, for every $a_{0} \in \operatorname{GF}(q)$, there exists a polynomial $a(x)$ of degree at most $t-1$, such that $a\left(\alpha_{1}\right)=s_{1}, \ldots, a\left(\alpha_{t-1}\right)=s_{t-1}$ and $a_{0}=a(0)=s$, which could have been the one chosen by the zookeeper.
Note. This polynomial is unique, so there is a bijection between the secrets a_{0} and the possible polynomials $a(x)$. Since the polynomial was chosen at random, the secret a_{0} is random given the information of the greedy monkeys.

