Diskrete Mathematik Solution 11

11.1 Polynomials over a Field

a) In \mathbb{Z}_7 , the multiplicative inverse of 5 is 3, because $3 \cdot 5 \equiv_7 1$. Therefore, the first coefficient of the result is 3. The rest of the computation proceeds analogously:

b) The irreducible polynomials of degree 4 over GF(2) are $x^4 + x^3 + 1$, $x^4 + x + 1$ and $x^4 + x^3 + x^2 + x + 1$.

We show this by eliminating all *reducible* polynomials of degree four. A polynomial $p(x) = x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$ is reducible if it is divisible by a polynomial of degree one or two (if it is divisible by a polynomial of degree three, then it must also be divisible by one of degree one).

By Lemma 5.28, the polynomials p(x) divisible by a polynomial of degree one are exactly those for which p(0) = 0 or p(1) = 0. Hence, we have to eliminate the polynomials for which $a_0 = 0$ or $a_3 + a_2 + a_1 + a_0 = 1$. Remaining are the polynomials: $x^4 + x^3 + 1$, $x^4 + x + 1$, $x^4 + x^2 + 1$ and $x^4 + x^3 + x^2 + x + 1$.

Furthermore, over GF(2) there is only one irreducible polynomial of degree two, namely x^2+x+1 (the other polynomials: x^2, x^2+1 and x^2+x can be eliminated in the same way we did above). Hence, we have to also eliminate $(x^2+x+1)^2 = x^4+x^2+1$.

c) Since 2 is a double root, it follows that $a(x) = (x-2)^2 b(x)$, where b(x) is a polynomial of degree 2. We know that $2 = a(3) = (3-2)^2 b(3)$, $3 = a(4) = (4-2)^2 b(4)$ and $5 = a(6) = (6-2)^2 b(6)$. Hence, we have b(3) = 2, $b(4) = 3 \cdot 4^{-1} = 6$ and $b(6) = 5 \cdot 2^{-1} = 6$. In order to determine b(x), we apply Lagrange's interpolation:

$$b(x) = 2\frac{(x-4)(x-6)}{(3-4)(3-6)} + 6\frac{(x-3)(x-6)}{(4-3)(4-6)} + 6\frac{(x-3)(x-4)}{(6-3)(6-4)}$$

= 3(x+3)(x+1) + 4(x+4)(x+1) + (x+4)(x+3)
= x² + 4x + 2

Therefore, $a(x) = (x - 2)^2(x^2 + 4x + 2) = x^4 + 4x^2 + x + 1$ and a(0) = 1.

11.2 The Ring $F[x]_{m(x)}$

a) The zero-divisors are those elements of $GF(3)[x]_{x^2+2x} \setminus \{0\}$ (that is, the non-zero polynomials of degree at most 1 with coefficients in \mathbb{Z}_3) which share a common factor (a polynomial of degree at least 1) with the modulus $x^2 + 2x$. The factors of $x^2 + 2x$ are x and x + 2, so the zero-divisors are the multiples of x and x + 2 of degree at most 1. These are ax and b(x + 2) for $a, b \in \mathbb{Z}_3$. Hence, the zero-divisors are:

$$x, 2x, x+2, 2x+1.$$

b) We have

$$GF(3)[x]_{x^2+2} = \{0, 1, 2, x, x+1, x+2, 2x, 2x+1, 2x+2\}$$

By Lemma 5.35,

$$GF(3)[x]_{x^2+2}^* = \{a(x) \in GF(3)[x]_{x^2+2} \mid gcd(a(x), x^2+2) = 1\}.$$

The task is to find all polynomials $a(x) \in GF(3)[x]$ of degree at most one, such that $gcd(a(x), x^2 + 2) = 1$. Note first that over GF(3), we have $x^2 + 2 = x^2 - 1 = (x+1)(x-1) = (x+1)(x+2)$. Hence, all polynomials b(x) of degree at most one, for which $gcd(b(x), (x+1)(x+2)) \neq 1$ are u(x+1) and v(x+2) for some $u, v \in GF(3)$. These polynomials are: x + 1, x + 2, 2x + 2, 2x + 1 and 0.

The polynomials of degree at most one that are left are in $GF(3)[x]_{x^2+2}^*$. Therefore, $GF(3)[x]_{x^2+2}^* = \{1, 2, x, 2x\}.$

c) The inverse of $x \in GF(3)[x]_{x^2+2}^*$ is a polynomial $p(x) \in GF(3)[x]_{x^2+2}^*$, such that $x \cdot p(x) \equiv_{x^2+2} 1$ (where 1 is the constant polynomial). Since all the polynomials in $GF(3)[x]_{x^2+2}^*$ have degree at most 1 (Definition 5.34), we have p(x) = ax + b for some $a, b \in GF(3)$. Therefore, we only need to find a and b such that $x \cdot (ax + b) \equiv_{x^2+2} 1$. Note that

$$x \cdot (ax+b) \equiv_{x^2+2} ax^2 + bx \equiv_{x^2+2} -2a + bx \equiv_{x^2+2} a + bx.$$

It is now easy to see that $a + bx \equiv_{x^2+2} 1$ when b = 0 and a = 1. Hence, the inverse of the polynomial x is p(x) = x.

11.3 Extension Fields

Let $F = \mathbb{Z}_5[x]_{x^2+3}$.

- a) The polynomial $a(x) = x^2 + 3 \in \mathbb{Z}_5[x]$ has no roots, because a(0) = 3, a(1) = 4, a(2) = 2, a(3) = 2, and a(4) = 4. Since a(x) has degree two, this implies that it is irreducible (Corollary 5.29). Therefore, *F* is a field (Theorem 5.36).
- **b)** By Lemma 5.33 we have $|F| = 5^2 = 25$, since $|\mathbb{Z}_5| = 5$ and $x^2 + 3$ is of degree 2. As *F* is a field, we have $F^* = F \setminus \{0\}$. Thus, $|F^*| = |F| 1 = 25 1 = 24$.

c) We have $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ for a = 3x + 2, b = 4x, c = 3x, and d = x + 1. Thus, ad - bc = (3x + 2)(x + 1) - (4x)(3x) $= (3x^2 + 3x + 2x + 2) - 12x^2$ $= -9x^2 + 5x + 2$ $= x^2 + 2$ $\equiv_{x^2+3} 2 - 3$ = 4.

We have $4^{-1} \equiv_5 4$. Therefore, we obtain

$$M^{-1} = (ad - bc)^{-1} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
$$= 4 \cdot \begin{pmatrix} x+1 & -4x \\ -3x & 3x+2 \end{pmatrix}$$
$$= \begin{pmatrix} 4x+4 & 4x \\ 3x & 2x+3 \end{pmatrix}.$$

11.4 Polynomials over Extension Fields (* *)

The elements of $GF(2)[x]_{x^2+x+1}$ are 0, 1, x and x + 1. We first check whether any of these elements is a root of a(y):

$$\begin{array}{l} a(0) = x \\ a(1) = x + x + (x + 1) + x = 1 \\ a(x) = x \cdot x^3 + x \cdot x^2 + (x + 1) \cdot x + x = x^4 + x^3 + x^2 = x^2(x^2 + x + 1) = 0 \\ \text{Since } x \text{ is a root, } a(y) \text{ is divisible by } y - x \equiv_2 y + x. \end{array}$$

$$\begin{array}{rcrcrc} & xy^3+ & xy^2+(x+1)y+x & : & y+x & = & xy^2+y+1 \\ \hline & -(xy^3+(x+1)y^2 &) & \\ \hline & y^2+(x+1)y+x & \\ & -& (y^2+ & xy &) \\ \hline & & y+x & \\ & -& (y+x) & \\ \hline & & 0 & \end{array}$$

In the first step of the division we used the fact that in $GF(2)[x]_{x^2+x+1}$ we have $x^2 = x + 1$. We have $xy^3 + xy^2 + (x+1)y + x = (y+x)(xy^2+y+1)$. Let $b(y) = xy^2 + y + 1$. The only possible roots of b(y) are x and x + 1, because if 1 or 0 were roots of b(y), they would also be roots of a(y), which we already excluded.

 $b(x) = x \cdot x^2 + x + 1 = x^3 + x + 1 = (x^2 + x + 1)(x + 1) + x = x$ $b(x + 1) = x \cdot (x + 1)^2 + (x + 1) + 1 = x^3 = (x^2 + x + 1) \cdot (x + 1) + 1 = 1$

Since deg(b(y)) = 2 and b(y) has no roots, b(y) is irreducible. Hence, the factorization of a(y) is $a(y) = (y + x)(xy^2 + y + 1)$.

11.5 Secret Sharing

- a) By Lemma 5.31, the polynomial a(x) is uniquely determined by the *t* values $s_i = a(\alpha_i)$, known to the *t* monkeys. Hence, the monkeys can use the Lagrange's interpolation formula to reconstruct a(x) and the secret code a_0 .
- **b)** There are *q* possibilities for the secret a_0 . Without loss of generality, consider the clan consisting of monkeys M_1, \ldots, M_{t-1} with shares s_1, \ldots, s_{t-1} . By Lemma 5.31, for every $a_0 \in GF(q)$, there exists a polynomial a(x) of degree at most t 1, such that $a(\alpha_1) = s_1, \ldots, a(\alpha_{t-1}) = s_{t-1}$ and $a_0 = a(0) = s$, which could have been the one chosen by the zookeeper.

Note. This polynomial is unique, so there is a bijection between the secrets a_0 and the possible polynomials a(x). Since the polynomial was chosen at random, the secret a_0 is random given the information of the greedy monkeys.