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10.1 Elementary Properties of Rings

a) We have

(−a)b+ ab
distrib.
= (−a+ a)b

def. inverse
= 0b

Lemma 5.17 (i)
= 0.

Therefore, (−a)b is the additive inverse of ab, which means that (−a)b = −ab.
b) We have

(−a)(−b) + (−(ab)) a)
= (−a)(−b) + (−a)b distrib.

= (−a)(−b+ b)

def. inverse
= (−a)0 Lemma 5.17 (i)

= 0.

Therefore, (−a)(−b) is the additive inverse of −(ab), which means that (−a)(−b) =
−(−(ab)) = ab.

10.2 Properties of Commutative Rings

a) From a|b it follows that ∃d b = ad and, thus, bc = (ad)c = a(dc). Hence, a|bc.
b) From a|b it follows that ∃d b = ad and from a|c it follows that ∃e c = ae. By the

distributive law, we have b+ c = ad+ ae = a(d+ e). Hence, a|(b+ c).

10.3 Ideals in Rings

We show the implication in both directions.

( =⇒ ) Assume that (a) = R. This implies that 1 ∈ (a). By the definition of (a), this means
that 1 = a · r for some r ∈ R. This r is the inverse of a, so a is a unit.

(⇐= ) Assume that a is a unit. This means that there exists a−1 ∈ R, such that a · a−1 = 1.
To show that R ⊆ (a), we notice that for any s ∈ R, we have s = 1 · s = (a · a−1) · s =
a · (a−1 ·s) = a ·r, where r ∈ R. This implies that s ∈ (a). Moreover, trivially, (a) ⊆ R.
Hence, (a) = R.

10.4 Product of Rings

The neutral element of the operation ⊕ is (0, 0). We further have (1, 0) ⊗ (0, 1) = (0, 0)
and R being non-trivial implies (1, 0) 6= (0, 0) and (0, 1) 6= (0, 0). Hence, R × R has zero
divisors. Since no integral domain can have zero divisors, R×R is not an integral domain.



10.5 A Ring with a Special Property

a) Let x, y ∈ R be arbitrary. We choose a = x+ y to obtain

a+ a2 = (x+ y) + (x+ y)2

= (x+ y) + (x+ y)x+ (x+ y)y (distrib.)

= x+ y + x2 + yx+ xy + y2 (distrib.)

= (x+ x2) + (y + y2) + xy + yx. (commut. +, assoc. +)

By assumption we have (a2 + a)b = b(a2 + a) for any b ∈ R. For b = x we obtain

(a2 + a)b = b(a2 + a)

⇐⇒ ((x+ x2) + (y + y2) + xy + yx)x = x((x+ x2) + (y + y2) + xy + yx)

(distr.)⇐⇒ (x+ x2)x+ (y + y2)x+ xyx+ yx2 = x(x+ x2) + x(y + y2) + x2y + xyx.

Note that xyx appears on both sides of the equation, so we can subtract it on both
sides. Moreover, by assumption we have (x + x2)x = x(x + x2) and (y + y2)x =
x(y+y2), so we can subtract the two expressions on both sides of the equation. Hence,
x2y = yx2.

b) Let x, y ∈ R be arbitrary. By assumption we have (x+x2)y = y(x+x2). Observe that

(x+ x2)y = y(x+ x2)
(distr.)⇐⇒ xy + x2y = yx+ yx2.

Since by Subtask a) we have x2y = yx2, subtracting on both sides of the equation
yields xy = yx.

10.6 Linear Equation over a Field

In order to solve the system of equations, we can use Gaussian elimination over F . The
system can be expressed as the following matrix:A B B A

1 A 1 0
B B 1 1


First, we multiply the first row by the multiplicative inverse of A, which is B. We get: 1 A A 1

1 A 1 0
B B 1 1


Note that in F every element is its own additive inverse, so subtraction (formally, adding
the inverse of an element) is the same operation as addition. So, we can add the first row
to the second row and get

[
0, 0, B, 1

]
. Then, we add the first row multiplied by B to the

third row and get
[
B + (B · 1), B + (B ·A), 1 + (B ·A), 1 + (B · 1)

]
=
[
0, A, 0, A

]
.



After swapping the third and the second row, we now get the following matrix:1 A A 1
0 A 0 A
0 0 B 1


We multiply the second row by the multiplicative inverse of A and get and the third row
by the multiplicative inverse of B and get:1 A A 1

0 1 0 1
0 0 1 A


From the second and third rows we have z = A and y = 1. Further, from the first row we
get x = 1− (A · y)− (A · z) = 1 +A · (y + z) = 1 +A ·B = 0. Hence, the solution is x = 0,
y = 1 and z = A.

10.7 Integral Domains and Fields

a) For example, Z, Z[x], Q[x].

b) We have to prove that every a ∈ D \ {0} is a unit. Let a ∈ D \ {0} be arbitrary. We
define the function fa : D → D by fa(x) = a · x. We show that fa is bijective:

injective: Assume that there exist x, y ∈ D such that fa(x) = fa(y) and x 6= y.

0 = fa(y)− fa(x) = a · y − (a · x) = a · y + a · (−x) = a · (y − x),

where the third step follows from Lemma 5.17, and the last step uses the dis-
tributive law. Since by assumption a 6= 0 and y − x 6= 0, it follows that a is a
zero-divisor, which is a contradiction with D being an integral domain.

surjective: If fa was not surjective, we would have y /∈ Im(fa) for some y ∈ D,
which for finite D implies |Im(fa)| < |D|. But since fa is injective, the function
f ′a : D → Im(fa) defined by f ′a(x) = fa(x) is bijective, so |Im(fa)| = |D|, which
is a contradiction.

The inverse of a is f−1a (1), because a · f−1a (1) = fa(f
−1
a (1)) = 1, hence, a is a unit.
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