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9.1 Structure of Groups

a) There are 6 subgroups:

{(0, 0)}, {0, 2} × {0}, Z4 × {0}, {0} × Z5, {0, 2} × Z5, Z4 × Z5

You are not required to formally justify why these are all subgroups.

b) Take arbitrary a, b ∈ G. Since a ∗ a = e and b ∗ b = e, we have a = â, b = b̂ and

a ∗ b = â ∗ b. Hence, a ∗ b = â ∗ b Lemma 5.3
= b̂ ∗ â = b ∗ a.

9.2 Isomorphisms Map Generators to Generators

Take an arbitrary h ∈ H and let a = ψ−1(h) (the inverse of ψ exists, because ψ is bijective).
Since g is a generator, there exists an m ∈ Z such that a = gm.

• If m = 0, then by Lemma 5.5 (i), h = ψ(g0) = ψ(e) = e′ = ψ(g)0, where e and e′ are
the neutral elements of G and H , respectively.

• If m > 0, then h = ψ(gm) = ψ(g)m, where the last step is trivial for m = 1 and
otherwise follows from applying the definition of a homomorphism m− 1 times.

• If m < 0, then h = ψ(gm) = ψ((ĝ)|m|) = ψ(ĝ)|m| = (ψ̃(g))|m| = ψ(g)m, where the third
step is justified as above, and the fourth step follows from Lemma 5.5 (ii).

9.3 Applying Group Elements to Elements of Arbitrary Sets

a) For any s ∈ S we can choose s′ = θ(â, s) to obtain

ψa(s
′) = ψa(θ(â, s)) (def. s′)
= θ(a, θ(â, s)) (def. ψa)
= θ(a ∗ â, s) ii)
= θ(e, s) (G3)
= s. i)



This proves that ψa is surjective. Moreover, we have for any s, s′ ∈ S

ψa(s) = ψa(s
′) =⇒ θ(a, s) = θ(a, s′) (def. ψa)

=⇒ θ(â, θ(a, s)) = θ(â, θ(a, s′))

=⇒ θ(â ∗ a, s) = θ(â ∗ a, s′) ii)
=⇒ θ(e, s) = θ(e, s′) (G3)
=⇒ s = s′. i)

Hence, ψa is also injective, and thus bijective.

b) We prove that ∼ satisfies all properties of an equivalence relation.

Reflexivity: For any s ∈ S, i) implies that θ(e, s) = s, so we have s ∼ s.
Symmetry: For any s, t ∈ S we have

s ∼ t =⇒ θ(a, s) = t for some a ∈ G (def. ∼)
=⇒ θ(â, θ(a, s)) = θ(â, t) for some a ∈ G
=⇒ θ(â ∗ a, s) = θ(â, t) for some a ∈ G ii)
=⇒ θ(e, s) = θ(â, t) for some a ∈ G (G3)
=⇒ s = θ(â, t) for some a ∈ G i)
=⇒ θ(a, t) = s for some a ∈ G
=⇒ t ∼ s for some a ∈ G. (def. ∼)

Transitivity: For any s, t, v ∈ S we have

s ∼ t and t ∼ v =⇒ θ(a, s) = t and θ(b, t) = v for some a, b ∈ G (def. ∼)
=⇒ θ(b, θ(a, s)) = v for some a, b ∈ G (substituting t)
=⇒ θ(b ∗ a, s) = v for some a, b ∈ G ii)
=⇒ θ(a, s) = v for some a ∈ G
=⇒ s ∼ v. (def. ∼)

9.4 Rotations of a Cube

a) First of all, one has to decide which corner of the sofa coincides with the corner of
the room. For this, there are 8 possibilities. Once this corner is set, there are 3 edges
coming out of this corner (one of them going up) and, hence, 3 possibilities to place
the sofa. Once the corner and the edge going up are fixed, the position of the sofa is
fully defined. Hence, there are 3 · 8 = 24 possibilities overall.

b) Let us first determine |R|. Assume that the sofa stands in the corner in a certain (ar-
bitrary) position. After a rotation b, it may end up in one of the 24 possible positions
(this follows from Subtask a) ). Therefore, we can distinguish 24 different rotations
and |R| = 24.
It is possible to describe each element of R as a rotation around single axis. To see
this, consider all possible different rotations of a cube around an axis:



• Identity.

• Rotation around the centers of two opposite faces. There are 3 pairs of opposite
faces and for each pair there are 3 possible rotations: by 90, 180 and 270 degrees.
Together, this gives 9 rotations.

• Rotation around two opposite vertices. There are 4 pairs of opposite vertices and
for each pair there are 2 possible rotations: by 120 and 240 degrees. Together,
this gives 8 rotations

• Rotation around the centers of two opposite edges. There are 6 pairs of oppo-
site edges and for each pair there is only one possible rotation: by 180 degrees.
Together, this gives 6 rotations.

One can see (for example by drawing the cube after each rotation) that no two of the
above rotations end up with the cube being in the same position. Since together we
described 24 rotations and |R| = 24, each element of R corresponds to exactly one
rotation.

c) 〈R; ◦〉 is a group. Since function composition is associative, ◦ is associative as well
(this is because every rotation corresponds to a permutation of vertices). The neutral
element is the identity. Furthermore, every element has an inverse, namely a rotation
around the same axis by 360 degrees minus the original angle.

d) The operation ◦ is not commutative. Figure 1 illustrates that there exist rotations,
which do not commute.
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Figure 1: 〈R; ◦〉 is not commutative.

9.5 Diffie-Hellman

a) Let g ∈ 〈Zn;⊕〉 be the generator, which Alice and Bob use as the basis. Alice chooses
xA at random from {0, . . . , n − 1} and sends yA = Rn(g · xA). Analogously, Bob
chooses xB at random from {0, . . . , n−1} and sends yB = Rn(g ·xB). The established
shared key is kAB = Rn(g · xA · xB).



As shown in Example 5.27, we have gcd(g, n) = 1. Therefore, Eve can use the Ex-
tended GCD algorithm to efficiently find an a ∈ Z such that a · g ≡n 1. Then she can
compute kAB using the eavesdropped messages yA and yB as kAB = Rn(a · yA · yB).
This is because

kAB ≡n g · xA · xB ≡n g · xA · (a · g) · xB ≡n a · (g · xA) · (g · xB) ≡n a · yA · yB

b) Let us make Bob’s argument more explicit: The Diffie-Hellman protocol using a cyclic
group G = 〈g〉 is insecure if the discrete logarithm problem in G is easy. Since by
Theorem 5.7 there exists an isomorphism ϕ : G → Zn, one can compute x such that
gx = h by instead computing x such that ϕ(g)x = ϕ(h). Since this can be done
efficiently (both ϕ(g) and ϕ(h) are in Zn), Bob concludes that the discrete logarithm
problem is easy in all cyclic groups.
Bob’s argument is incorrect, because the above procedure is efficient only if the iso-
morphism ϕ can be efficiently computed, which is not always the case. For example,
computing the isomorphism given in the proof of Theorem 5.7 requires solving the
discrete logarithm problem in G (so Bob’s procedure would give no advantage).

9.6 The Group Z∗m

a) The order of the group 〈Z∗36;�〉 is ϕ(36). By Lemma 5.12,

ϕ(36) = (2− 1) · 22−1 · (3− 1) · 32−1 = 2 · 2 · 3 = 12.

Z∗36 consists of all numbers in Z36 which are relatively prime with 36, that is, Z∗36 =
{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35}.

b) We will verify for each a ∈ Z∗11 whether it is a generator (but more efficiently than by
computing 〈a〉). An a ∈ Z∗11 is a generator if and only if ord(a) = 10. By Lagrange’s
Theorem, ord(a) ∈ {1, 2, 5, 10}, so a is a generator if and only if ord(a) /∈ {1, 2, 5}, that
is, if and only if a 6= 1, a2 6= 1 and a5 6= 1. We can now compute R11(a

2) and R11(a
5)

for all a ∈ {2, . . . , 10}. The generators are 2, 6, 7 and 8.

Note. Another way to solve this exercise for any 〈Z∗
m;�〉 is to first use Theorem 5.15 to determine

whether 〈Z∗
m;�〉 is cyclic. If so, it is isomorphic to 〈Zϕ(m);⊕〉. Now we find one generator g of Z∗

m (by
trying all possibilities) and prove that for any i ∈ Zϕ(m), gi is a generator if and only if gcd(i, ϕ(m)) = 1

(see Example 5.27).

c) We prove that f : Z∗nm → Z∗n × Z∗m, defined by f(x) = (Rn(x), Rm(x)) is an isomor-
phism. Throughout the proof we will use the fact that gcd(Rm(x),m) = gcd(x,m) for
any x,m, which follows from Lemma 4.2.

f is a function. We show that f(x) ∈ Z∗n ×Z∗m for all x ∈ Z∗nm.
Let x ∈ Z∗nm, which means that gcd(x, nm) = 1. Let d = gcd(x, n). Then, d | x
and d | n, which implies that d | x and d | nm, so by the definition of gcd,
d | gcd(x, nm). Hence, d | 1, so d = 1. Therefore, gcd(Rn(x), n) = gcd(x, n) = 1,
so Rn(x) ∈ Z∗n.
The proof that Rm(x) ∈ Z∗m is analogous.



f is surjective. Take any (a, b) ∈ Z∗n × Z∗m. Since gcd(m,n) = 1, by CRT, there exists
an x ∈ Znm such that (Rn(x), Rm(x)) = (a, b). To show that x ∈ Z∗nm, assume
towards a contradiction that d = gcd(x, nm) > 1. Let p be an arbitrary prime
in the decomposition of d. Since p | mn, by Lemma 4.7, p | n or p | m. In the
first case, since also p | x, we get p | gcd(x, n). But gcd(x, n) = gcd(Rn(x), n) =
gcd(a, n) = 1 (because a ∈ Z∗n), so this is a contradiction. Analogously, in the
second case we get p | gcd(b,m).

f is injective. By CRT, the x defined above is unique in Znm, hence, it is also unique
in Z∗nm.

f is a homomorphism. For any a, b ∈ Z∗nm,

f(a�nm b) =(Rn(a�nm b), Rm(a�nm b))

=(Rn(Rnm(ab)), Rm(Rnm(ab)))

=(Rn(ab), Rm(ab))

=(Rn(Rn(a) ·Rn(b)), Rm(Rm(a) ·Rm(b)))

=(Rn(a)�n Rn(b), Rm(a)�m Rm(b))

=(Rn(a), Rm(a)) ? (Rn(b), Rm(b)) 1

=f(a) ? f(b).

d) The goal is to construct an isomorphism ϕ : Z∗15 → Z∗20. We will proceed in three
steps, where we construct three isomorphisms: α : Z∗15 → Z∗3 × Z∗5, β : Z∗3 × Z∗5 →
Z∗4 × Z∗5 and γ : Z∗4 × Z∗5 → Z∗20. We then define ϕ as the composition of these
isomorphisms: ϕ = γ ◦ β ◦ α.
To construct α, we use Subtask a) and define α : a 7→ (R3(a), R5(a)). Further, let f
be the isomorphism f : Z∗20 → Z∗4 × Z∗5, defined by f : a 7→ (R4(a), R5(a)). We set
γ = f−1 (γ can be computed efficiently using the Chinese Remainder Theorem).
What is left is to find the isomorphism β. Note first that the function g : Z∗3 → Z∗4
defined by g(1) = 1 and g(2) = 3 is an isomorphism. The function g is trivially
bijective. We also have g(1 � 1) = 1 = g(1) � g(1), g(2 � 1) = 3 = g(2) � g(1),
g(1 � 2) = 3 = g(1) � g(2) and g(2 � 2) = 1 = g(2) � g(2). Therefore, g is also a
homomorphism. Therefore, β defined by β

(
(a, b)

)
=
(
g(a), b

)
is an isomorphism.

Note. Alternatively, one can find an isomorphism ψ using trial and error. However, in such case one
has to prove that ψ is indeed an isomorphism.

9.7 An RSA Attack

First, consider the case when n1, n2 and n3 are not relatively prime. Without loss of gen-
erality, assume that gcd(n1, n2) > 1. We can now use the Extended GCD algorithm to
compute p = gcd(n1, n2) and this way efficiently factorize n1. This allows us to compute
the secret key of Alice and decrypt c1.

1The operation ? on Z∗
n ×Z∗

m is defined as (a1, b1) ? (a2, b2) := (a1 �n a2, b1 �m b2).



Secondly, assume that n1, n2 and n3 are relatively prime. Consider the following system of
congruence equations:

x ≡ c1 (mod n1)

x ≡ c2 (mod n2)

x ≡ c3 (mod n3)

Let N = n1n2n3. Using the Chinese Remainder Theorem, we can efficiently find the solu-
tion x0 to the above system of equations, such that 0 ≤ x0 < N .
Notice now thatm3 is also a solution to the system of equations, because ci ≡ m3 (mod ni)
for i ∈ {1, 2, 3}. Moreover, since 0 ≤ m < ni for i ∈ {1, 2, 3}, we have 0 ≤ m3 < n1 ·n2 ·n3 =
N . Since by the Chinese Remainder Theorem x0 is unique in {0, . . . , N − 1}, it follows that
x0 = m3.
What is left is to compute the cube root of x0 over Z, which can be done efficiently.
Note. This attack is also possible for e > 3. However, for given e one needs e ciphertexts, each encrypted for a
different recipient.
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