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8.1 Multiplicative Inverses

a) The inverse of a is Rm(u), because a ·Rm(u) ≡m au ≡m 1− vm ≡m 1.

b) We first compute gcd(142, 553), using Lemma 4.2. Notice that dividing 553 by 142,
we get

553 = 3 · 142 + 127. (1)

Hence, by Lemma 4.2 (setting m = 142 and n = 553), we have gcd(142, 553) =
gcd(142, 127). We then repeat this trick:

142 = 127 + 15 (2)
127 = 8 · 15 + 7 (3)
15 = 2 · 7 + 1 (4)

Therefore, gcd(142, 553) = gcd(142, 127) = gcd(127, 15) = gcd(15, 7) = gcd(7, 1) = 1.
We now notice that rearranging Equations (1) to (4) allows us to find u and v such
that 1 = 142u+ 553v as follows:

1
(4)
= 15− 2 · 7
(3)
= 15− 2 · (127− 8 · 15) = (−2) · 127 + 17 · 15
(2)
= (−2) · 127 + 17 · (142− 127) = 17 · 142− 19 · 127
(1)
= 17 · 142− 19 · (553− 3 · 142) = 74 · 142− 19 · 553

Therefore, the multiplicative inverse of 142 modulo 553 is R553(74) = 74.

Note: The above method can be generalized to efficiently compute, for any given a and b, values u and
v, such that gcd(a, b) = ua+ vb. The resulting algorithm is called the extended Euclid’s gcd-algorithm.
Moreover, since an integer a has the multiplicative inverse modulo m if and only if gcd(a,m) = 1, this
algorithm allows to efficiently compute the multiplicative inverse of any number (or conclude that the
inverse does not exist).

8.2 Adding Digits of q-ary Numbers

a) The claim is trivially true for q = 2, since we have R1(n) = 0 for all n ∈ N. For q > 2,



we use modular arithmetic (Corollary 4.17) to see that

Rq−1(n) = Rq−1

 ∑
i∈{0,...,k}

qi · ai


= Rq−1

 ∑
i∈{0,...,k}

Rq−1(q)
i · ai


= Rq−1

 ∑
i∈{0,...,k}

1i · ai


= Rq−1

 ∑
i∈{0,...,k}

ai

 .

b) We have ∑
i∈{0,...,k}

ai =
∑

i∈{0,...,k}

bi

=⇒ Rq−1(n) = Rq−1(2n) (Subtask a))
=⇒ n ≡q−1 2n (Lemma 4.16)
=⇒ (q − 1) | (n− 2n) (Def. ≡q−1)

=⇒ (q − 1) | −n
=⇒ (q − 1) | n.

8.3 Solution of a Congruence Equation

a) Take any a, b,m ∈ Z, such that m > 0.

ax ≡m b for some x ∈ Z
⇐⇒ ax− b = km for some x, k ∈ Z (def. ≡m)

⇐⇒ ax+ (−k)m = b for some x, k ∈ Z
⇐⇒ b ∈ (a,m) (def. of the ideal)
⇐⇒ b ∈ (d), where d = gcd(a,m) (Lemmas 4.3 and 4.4)
⇐⇒ b = u · gcd(a,m) for some u ∈ Z (def. of the ideal)
⇐⇒ gcd(a,m) | b

8.4 The Chinese Remainder Theorem

a) =⇒: Assume that a ≡nm b. This means that there exists a k ∈ Z such that a − b =
k(nm). Therefore, a− b = (km)n and, thus, a ≡n b. Analogously, we get a ≡m b.
⇐=: Assume that a ≡n b ∧ a ≡m b. Now consider the system of congruence equations
x ≡n Rn(b) ∧ x ≡m Rm(b). By Lemma 4.16, we have a ≡n b ∧ a ≡m b ⇐⇒ a ≡n



Rn(b) ∧ a ≡m Rm(b). Hence, by the assumption, x = a is a solution to the system of
congruence equations. Analogously, x = b is also a valid solution.
Since gcd(n,m) = 1, it follows from the Chinese Remainder Theorem that all solu-
tions for x are congruent modulo nm. Therefore, we must have a ≡nm b.

b) Since m and n are not relatively prime, we cannot apply directly the Chinese Remain-
der Theorem. Therefore, we will transform the system of congruence equations.
By subtask a), the following system of congruence equations is equivalent:

x ≡a y1 (1)
x ≡b y1 (2)
x ≡a y2 (3)
x ≡c y2 (4)

If y1 6≡a y2, there are clearly no solutions. Otherwise, the equations (1) and (3) are
equivalent and we can remove (3). By Lemma 4.16, we get the following equivalent
system of congruence equations:

x ≡a Ra(y1)

x ≡b Rb(y1)

x ≡c Rc(y2)

Since a, b, c are pairwise relatively prime, the Chinese Remainder Theorem guaran-
tees that there exists a unique solution x0 such that 0 ≤ x0 < abc. All remaining
solutions must be of the form x0 + k(abc) for k ∈ N. Since nm = a2bc, there exist
exactly a solutions x such that 0 ≤ x < nm.

8.5 Algebras

a) 〈Z; ?〉 is neither a group nor a monoid, because ? is not associative. The counterex-
ample is the following:

2 ? (0 ? 0) = 2 ? 0 = 4 6= 16 = 4 ? 0 = (2 ? 0) ? 0

b) 〈P(X);∪〉 is a commutative monoid but not a group.
Associativity and commutativity of ∪ follow directly from Theorem 3.4. The neutral
element is ∅, because (1) A∪∅ = ∅∪A = A for all A and (2) ∅ ∈ P(X), since ∅ ⊆ X
for any X .
To prove that it is not a group, we give a counterexample to G3. Since X 6= ∅, there
exists an x ∈ X . Therefore, {x} ∈ P(X). Assume for contradiction that there exists
an inverse element of {x}, that is, assume that there exists an A ∈ P(X) such that
{x} ∪A = ∅. But since x ∈ {x} ∪A, this is a contradiction.



8.6 Facts About Groups

a) We have to show that e is also a left neutral element. For any a ∈ G, we have

e ∗ a G3
= (a ∗ â) ∗ a G1

= a ∗ (â ∗ a) G3
= a ∗ e G2’

= a

b) We have to show that b̂ ∗ â is the right inverse of a ∗ b, that is, that (a ∗ b) ∗ (̂b ∗ â) = e

(as proved in the lecture notes, this implies that (̂b ∗ â) ∗ (a ∗ b) = e).

(a ∗ b) ∗ (̂b ∗ â) G1
= a ∗

(
b ∗ (̂b ∗ â)

)
G1
= a ∗

(
(b ∗ b̂) ∗ â

)
G3
= a ∗ (e ∗ â) G2

= a ∗ â G3
= e

c) For any a, b, c ∈ G, we have

a ∗ b = a ∗ c G3
=⇒ â ∗ (a ∗ b) = â ∗ (a ∗ c)
G1
=⇒ (â ∗ a) ∗ b = (â ∗ a) ∗ c
G3
=⇒ e ∗ b = e ∗ c
G2
=⇒ b = c
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