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7.1 Countability

i) The set of all Java programs is countable. Every Java program can be seen as a finite
binary sequence. That is, there is an injection from the set of all Java programs to the
set {0, 1}∗ of finite binary sequences. By Theorem 3.16, this set is countable.

ii) This set is uncountable. Let S denote the set of all equivalence relations on N. We give
an injection f : P(N \ {0}) → S. The claim follows, since P(N \ {0}) is uncountable
(the elements of P(N \ {0}) correspond to semi-infinite binary sequences, which are
uncountable by Theorem 3.21).

To define the injection f : P(N \ {0})→ S, consider an A ∈ P(N \ {0}). We partition
N into A ∪ {0} and N \ (A ∪ {0}) and define the equivalence relation f(A) such that
two numbers are f(A)-related if they are in the same set of the partition. Clearly,
f is injective, since for two different sets A and A′, the equivalence classes of 0 are
different for the relations f(A) and f(A′) and hence f(A) 6= f(A′).

7.2 The Diagonalization Argument

a) Let βi,j be the j-th bit in αi. In the lecture, α was defined as α def
= β0,0, β1,1, β2,2, . . .

A second sequence α′ can be defined as α′ def
= β0,0, β0,1, β1,2, β2,3, . . . . For any i, α′

disagrees with αi on the bit i+ 1. Moreover, it disagrees with α on the first bit. Note
that there are many possible solutions (see Subtask b)).

b) The set L is uncountable. Indeed, we have L ∪ {α0, α1, . . . } = {0, 1}∞, and if L was
countable, then we would have a contradiction with Theorem 3.21 (since {0, 1}∞ is
uncountable).

7.3 More Countability

For any b ∈ {0, 1}∞, let bi for i ∈ N denote the i-th bit of b, and define the function fb : N→
{0, 1} by

fb(3i) = bi, fb(3i+ 1) = 0, and fb(3i+ 2) = 1.

We define the function g : {0, 1}∞ → S by g(b) = fb. It is easy to verify that fb ∈ S for any
b ∈ {0, 1}∞: for any i ∈ N we have fb(3i) = fb(3i + 1) or fb(3i) = fb(3i + 2), as well as
fb(3i+ 1) = fb(3(i+ 1) + 1) and fb(3i+ 2) = fb(3(i+ 1) + 2).



We show that g is injective: Let b, b′ ∈ {0, 1}∞ be arbitrary and assume b 6= b′. This implies
that bi 6= b′i for some i ∈ N. Since fb(3i) = bi and fb′(3i) = b′i we have fb(3i) 6= fb′(3i).
Hence, g(b) = fb 6= fb′ = g(b′).
As g is injective, we have {0, 1}∞ � S. Since {0, 1}∞ is uncountable by Theorem 3.21, S is
uncountable as well.

7.4 The Hunt for the Red October

At any time twe can fire a torpedo to position s = x · t+y for some x and y. The submarine
sinks if its speed and the starting position happened to be x and y. Thus, at any time t we
can make a guess about x and y and sink the submarine based on that guess. We now have
to systematically check all the pairs (x, y) ∈ Z× Z.
Hence, we need a surjective function f : N→ Z×Z that will assign to a time t a pair (x, y).
(Surjectivity guarantees that every (x, y) will be tested at some time t′.) Since Z×Z is count-
able (by Example 3.64 and Corollary 3.18), there exists an injective function g : Z× Z→ N.
We can now define f as

f(n) :=

{
(a, b) if ∃(a, b) g((a, b)) = n

(0, 0) otherwise

By the injectivity of g, we have {(a, b)} = g−1({g((a, b))}) for all (a, b) ∈ Z × Z. Also, for
any (a, b) there exists an n ∈ N such that g((a, b)) = n and, therefore, there exists an n ∈ N
such that f(n) = (a, b). Hence, f is surjective and we will eventually sink the submarine.

7.5 The Greatest Common Divisor

Let a, b, u, v ∈ Z \ {0} be such that ua + vb = 1 and let d = gcd(a, b). By the definition of
gcd, we have d | a and d | b. That is, there exist k, l ∈ Z such that a = kd and b = ld.
Hence, 1 = ua+ vb = ukd+ vld = (uk + vl)d. Thus, d | 1.
Since 1 is the only positive divisor of 1, it follows that d = 1.

7.6 Congruences

a) Take arbitrary m,n ∈ N. By Lemma 4.14 we have

123m − 33n ≡10 3
m − 3n.

Assume without loss of generality that m ≤ n. If m ≡4 n, then there exists a k ∈ N,
such that n−m = 4k and by Lemma 4.14, we have:

3m − 3n ≡10 3
m(1− 3n−m) ≡10 3

m(1− 34k) ≡10 3
m(1− 92k)

≡10 3
m(1− (−1)2k) ≡10 3

m(1− 1k) ≡10 3
m · 0 ≡10 0.

b) Take any a, b, c, d,m ∈ Z, such that m > 0. Assume that a ≡m b and c ≡m d. Then,
there exist s, t ∈ Z such that a− b = ms and c− d = mt. It follows that

ac = (ms+ b)(mt+ d) = m2st+msd+mtb+ bd = m(mst+ sd+ tb) + bd.



Therefore, m | ac− bd, so ac ≡m bd.

c) Consider all possible remainders R11(n
5 + 7) and R11(m

2) when m,n ∈ Z. By Corol-
lary 4.17, we have R11(n

5 + 7) = R11((R11(n))
5 + 7) and R11(m

2) = R11((R11(m))2).
By trying all ten possibilities for R11(n) and, respectively, for R11(m), we get that
R11(n

5 + 7) ∈ {6, 7, 8} and R11(m
2) ∈ {0, 1, 3, 4, 5, 9}. Since these sets are disjoint,

n5 + 7 cannot be equal to m2.

7.7 Modular Arithmetic

a) Take any even n ≥ 0 and let k ∈ N be such that n = 2k. By Corollary 4.17, we have
R7(13

n+6) = R7(R7(13)
n+6) = R7(R7(−1)n+6) = R7((−1)n+6) = R7((−1)2k+6) =

R7(7) = 0. Hence, 7 | 13n + 6.

b) Let a, e,m, n ∈ N \ {0} and assume that Rm(ae) = 1. By Theorem 4.1, there exists a
q ∈ N, such that n = qe+Re(n). Therefore,

Rm(an) = Rm

(
aqe+Re(n)

)
= Rm

(
(ae)q · aRe(n)

)
= Rm

(
(Rm (ae))q ·Rm

(
aRe(n)

))
(Corollary 4.17)

= Rm

(
1q ·Rm

(
aRe(n)

))
(Rm(ae) = 1)

= Rm

(
Rm(1)q ·Rm

(
aRe(n)

))
= Rm

(
aRe(n)

)
. (Corollary 4.17)

c) By Subtask b), R13(4
2020) = R13(4

R6(2020)) = R13(4
4). Now we have 44 ≡13 162 ≡13

32 ≡13 9.
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