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Diskrete Mathematik

Solution 7

7.1 Countability

i) The set of all Java programs is countable. Every Java program can be seen as a finite
binary sequence. That is, there is an injection from the set of all Java programs to the
set {0, 1}* of finite binary sequences. By Theorem 3.16, this set is countable.

ii) This setis uncountable. Let S denote the set of all equivalence relations on N. We give
an injection f : P(N\ {0}) — S. The claim follows, since P(N \ {0}) is uncountable
(the elements of P(N \ {0}) correspond to semi-infinite binary sequences, which are
uncountable by Theorem 3.21).

To define the injection f : P(N\ {0}) — S, consider an A € P(N\ {0}). We partition
Ninto AU {0} and N\ (AU {0}) and define the equivalence relation f(A) such that
two numbers are f(A)-related if they are in the same set of the partition. Clearly,
f is injective, since for two different sets A and A’, the equivalence classes of 0 are

different for the relations f(A) and f(A’) and hence f(A) # f(A").

7.2 The Diagonalization Argument

a) Let 3; ; be the j-th bit in ¢;. In the lecture, o was defined as « def Boo, B1,1, P22, - .-

A second sequence o/ can be defined as o’ def Bo.0s Boas Bia, Bas, ....Foranyi, o
disagrees with «; on the bit < + 1. Moreover, it disagrees with o on the first bit. Note
that there are many possible solutions (see Subtask b)).

b) The set L is uncountable. Indeed, we have L U {«ag,a1,...} = {0,1}*°, and if L was
countable, then we would have a contradiction with Theorem 3.21 (since {0, 1} is
uncountable).

7.3 More Countability
Forany b € {0,1}*, let b; for i € N denote the i-th bit of b, and define the function f; : N —
{0,1} by

fb(3i) =b;, fb(3Z + 1) =0, and fb(3i + 2) =1.

We define the function g : {0,1}*° — S by g(b) = fp. It is easy to verify that f;, € S for any
b € {0,1}: for any ¢ € N we have f,(3i) = f,(3i + 1) or f(3i) = fp(3i + 2), as well as
pBi+1) = fr(3(t+1)+1)and fp(3i + 2) = fp,(3(: + 1) + 2).



We show that g is injective: Let b,0’ € {0,1} be arbitrary and assume b # V'. This implies
that b; # b, for some ¢ € N. Since f,(3¢) = b; and fy(3i) = b, we have f,(31) # fiy(3i).
Hence, g(b) = fi # fir = g(V').

As g is injective, we have {0,1}* < S. Since {0, 1}* is uncountable by Theorem 3.21, S is
uncountable as well.

7.4 The Hunt for the Red October

At any time t we can fire a torpedo to position s = x -t +y for some z and y. The submarine
sinks if its speed and the starting position happened to be x and y. Thus, at any time ¢ we
can make a guess about x and y and sink the submarine based on that guess. We now have
to systematically check all the pairs (z,y) € Z x Z.

Hence, we need a surjective function f : N — Z x Z that will assign to a time ¢ a pair (z,y).
(Surjectivity guarantees that every (z,y) will be tested at some time ¢.) Since Z x Z is count-
able (by Example 3.64 and Corollary 3.18), there exists an injective function g : Z x Z — N.
We can now define f as

f(n) = {W) if 3(a,b) g((a,b)) =n
7 1(0,0) otherwise

By the injectivity of g, we have {(a,b)} = g7 1({g((a,b))}) for all (a,b) € Z x Z. Also, for
any (a,b) there exists an n € N such that ¢g((a,b)) = n and, therefore, there exists ann € N
such that f(n) = (a,b). Hence, f is surjective and we will eventually sink the submarine.

7.5 The Greatest Common Divisor

Let a,b,u,v € Z \ {0} be such that ua + vb = 1 and let d = gcd(a,b). By the definition of
ged, we have d | a and d | b. That is, there exist k,! € Z such that a = kd and b = Id.

Hence, 1 = ua + vb = ukd + vld = (uk + vl)d. Thus, d | 1.
Since 1 is the only positive divisor of 1, it follows that d = 1.

7.6 Congruences
a) Take arbitrary m,n € N. By Lemma 4.14 we have
123™ — 33" =19 3™ — 3",

Assume without loss of generality that m < n. If m =4 n, then there existsa k € N,
such that n — m = 4k and by Lemma 4.14, we have:

377’1 _ 3TL ElO 3m(1 _ 3n—m) ElO 3771(1 _ 34l€) El[] 3771(1 _ 92]6)
=10 3m(1 — (—1)2k> =10 3m(1 — 1k) =10 3m.0 =10 0.

b) Take any a,b,c,d,m € Z, such that m > 0. Assume that a =, b and ¢ =,, d. Then,
there exist s, ¢ € Z such that a — b = ms and ¢ — d = m¢t. It follows that

ac = (ms + b)(mt 4 d) = m?st + msd + mtb + bd = m(mst + sd + tb) + bd.



Therefore, m | ac — bd, so ac =, bd.

¢) Consider all possible remainders R11(n® +7) and Ry1(m?) when m,n € Z. By Corol-
lary 4.17, we have Ry1(n® + 7) = Ri1((R11(n))® + 7) and Ry1(m?) = Ri1((R11(m))?).
By trying all ten possibilities for R;;1(n) and, respectively, for Ri;(m), we get that
Ri1(n® 4+ 7) € {6,7,8} and Ry1(m?) € {0,1,3,4,5,9}. Since these sets are disjoint,
n® + 7 cannot be equal to m?.

7.7 Modular Arithmetic

a) Take any even n > 0 and let £ € N be such that n = 2k. By Corollary 4.17, we have
R7(13"+6) = R7(R7(13)"+6) = R7(R7(—1)"+6) = R7((—1)"+6) = R7((—1)%*+6) =
R7(7) = 0. Hence, 7 | 13" + 6.

b) Let a,e,m,n € N\ {0} and assume that R,,(a®) = 1. By Theorem 4.1, there exists a
q € N, such that n = ge + R.(n). Therefore,

“ R, ( qae+Re(n) )

= R (o)’ )

= Ry, ( ( Re<n>>) (Corollary 4.17)
i Rm< 9) )=
- (0 0

=R, ( Re(n) ) (Corollary 4.17)

¢) By Subtask b), R;3(420%0) = R;3(4f6(2020)) = R;3(4%). Now we have 4* =3 162 =3
32 =13 9.
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