Diskrete Mathematik

 Solution 7

 Solution 7}

7.1 Countability

i) The set of all Java programs is countable. Every Java program can be seen as a finite binary sequence. That is, there is an injection from the set of all Java programs to the set $\{0,1\}^{*}$ of finite binary sequences. By Theorem 3.16, this set is countable.
ii) This set is uncountable. Let S denote the set of all equivalence relations on \mathbb{N}. We give an injection $f: \mathcal{P}(\mathbb{N} \backslash\{0\}) \rightarrow S$. The claim follows, since $\mathcal{P}(\mathbb{N} \backslash\{0\})$ is uncountable (the elements of $\mathcal{P}(\mathbb{N} \backslash\{0\})$ correspond to semi-infinite binary sequences, which are uncountable by Theorem 3.21).
To define the injection $f: \mathcal{P}(\mathbb{N} \backslash\{0\}) \rightarrow S$, consider an $A \in \mathcal{P}(\mathbb{N} \backslash\{0\})$. We partition \mathbb{N} into $A \cup\{0\}$ and $\mathbb{N} \backslash(A \cup\{0\})$ and define the equivalence relation $f(A)$ such that two numbers are $f(A)$-related if they are in the same set of the partition. Clearly, f is injective, since for two different sets A and A^{\prime}, the equivalence classes of 0 are different for the relations $f(A)$ and $f\left(A^{\prime}\right)$ and hence $f(A) \neq f\left(A^{\prime}\right)$.

7.2 The Diagonalization Argument

a) Let $\beta_{i, j}$ be the j-th bit in α_{i}. In the lecture, α was defined as $\alpha \stackrel{\text { def }}{=} \overline{\beta_{0,0}}, \overline{\beta_{1,1}}, \overline{\beta_{2,2}}, \ldots$ A second sequence α^{\prime} can be defined as $\alpha^{\prime} \stackrel{\text { def }}{=} \beta_{0,0}, \overline{\beta_{0,1}}, \overline{\beta_{1,2}}, \overline{\beta_{2,3}}, \ldots$. For any i, α^{\prime} disagrees with α_{i} on the bit $i+1$. Moreover, it disagrees with α on the first bit. Note that there are many possible solutions (see Subtask b)).
b) The set L is uncountable. Indeed, we have $L \cup\left\{\alpha_{0}, \alpha_{1}, \ldots\right\}=\{0,1\}^{\infty}$, and if L was countable, then we would have a contradiction with Theorem 3.21 (since $\{0,1\}^{\infty}$ is uncountable).

7.3 More Countability

For any $b \in\{0,1\}^{\infty}$, let b_{i} for $i \in \mathbb{N}$ denote the i-th bit of b, and define the function $f_{b}: \mathbb{N} \rightarrow$ $\{0,1\}$ by

$$
f_{b}(3 i)=b_{i}, f_{b}(3 i+1)=0, \text { and } f_{b}(3 i+2)=1
$$

We define the function $g:\{0,1\}^{\infty} \rightarrow S$ by $g(b)=f_{b}$. It is easy to verify that $f_{b} \in S$ for any $b \in\{0,1\}^{\infty}$: for any $i \in \mathbb{N}$ we have $f_{b}(3 i)=f_{b}(3 i+1)$ or $f_{b}(3 i)=f_{b}(3 i+2)$, as well as $f_{b}(3 i+1)=f_{b}(3(i+1)+1)$ and $f_{b}(3 i+2)=f_{b}(3(i+1)+2)$.

We show that g is injective: Let $b, b^{\prime} \in\{0,1\}^{\infty}$ be arbitrary and assume $b \neq b^{\prime}$. This implies that $b_{i} \neq b_{i}^{\prime}$ for some $i \in \mathbb{N}$. Since $f_{b}(3 i)=b_{i}$ and $f_{b^{\prime}}(3 i)=b_{i}^{\prime}$ we have $f_{b}(3 i) \neq f_{b^{\prime}}(3 i)$. Hence, $g(b)=f_{b} \neq f_{b^{\prime}}=g\left(b^{\prime}\right)$.
As g is injective, we have $\{0,1\}^{\infty} \preceq S$. Since $\{0,1\}^{\infty}$ is uncountable by Theorem 3.21,S is uncountable as well.

7.4 The Hunt for the Red October

At any time t we can fire a torpedo to position $s=x \cdot t+y$ for some x and y. The submarine sinks if its speed and the starting position happened to be x and y. Thus, at any time t we can make a guess about x and y and sink the submarine based on that guess. We now have to systematically check all the pairs $(x, y) \in \mathbb{Z} \times \mathbb{Z}$.
Hence, we need a surjective function $f: \mathbb{N} \rightarrow \mathbb{Z} \times \mathbb{Z}$ that will assign to a time t a pair (x, y). (Surjectivity guarantees that every (x, y) will be tested at some time t^{\prime}.) Since $\mathbb{Z} \times \mathbb{Z}$ is countable (by Example 3.64 and Corollary 3.18), there exists an injective function $g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{N}$. We can now define f as

$$
f(n):= \begin{cases}(a, b) & \text { if } \exists(a, b) \quad g((a, b))=n \\ (0,0) & \text { otherwise }\end{cases}
$$

By the injectivity of g, we have $\{(a, b)\}=g^{-1}(\{g((a, b))\})$ for all $(a, b) \in \mathbb{Z} \times \mathbb{Z}$. Also, for any (a, b) there exists an $n \in \mathbb{N}$ such that $g((a, b))=n$ and, therefore, there exists an $n \in \mathbb{N}$ such that $f(n)=(a, b)$. Hence, f is surjective and we will eventually sink the submarine.

7.5 The Greatest Common Divisor

Let $a, b, u, v \in \mathbb{Z} \backslash\{0\}$ be such that $u a+v b=1$ and let $d=\operatorname{gcd}(a, b)$. By the definition of gcd, we have $d \mid a$ and $d \mid b$. That is, there exist $k, l \in \mathbb{Z}$ such that $a=k d$ and $b=l d$.
Hence, $1=u a+v b=u k d+v l d=(u k+v l) d$. Thus, $d \mid 1$.
Since 1 is the only positive divisor of 1 , it follows that $d=1$.

7.6 Congruences

a) Take arbitrary $m, n \in \mathbb{N}$. By Lemma 4.14 we have

$$
123^{m}-33^{n} \equiv_{10} 3^{m}-3^{n} .
$$

Assume without loss of generality that $m \leq n$. If $m \equiv_{4} n$, then there exists a $k \in \mathbb{N}$, such that $n-m=4 k$ and by Lemma 4.14, we have:

$$
\begin{aligned}
3^{m}-3^{n} & \equiv{ }_{10} 3^{m}\left(1-3^{n-m}\right) \equiv_{10} 3^{m}\left(1-3^{4 k}\right) \equiv_{10} 3^{m}\left(1-9^{2 k}\right) \\
& \equiv_{10} 3^{m}\left(1-(-1)^{2 k}\right) \equiv_{10} 3^{m}\left(1-1^{k}\right) \equiv_{10} 3^{m} \cdot 0 \equiv_{10} 0 .
\end{aligned}
$$

b) Take any $a, b, c, d, m \in \mathbb{Z}$, such that $m>0$. Assume that $a \equiv_{m} b$ and $c \equiv_{m} d$. Then, there exist $s, t \in \mathbb{Z}$ such that $a-b=m s$ and $c-d=m t$. It follows that

$$
a c=(m s+b)(m t+d)=m^{2} s t+m s d+m t b+b d=m(m s t+s d+t b)+b d .
$$

Therefore, $m \mid a c-b d$, so $a c \equiv_{m} b d$.
c) Consider all possible remainders $R_{11}\left(n^{5}+7\right)$ and $R_{11}\left(m^{2}\right)$ when $m, n \in \mathbb{Z}$. By Corollary 4.17, we have $R_{11}\left(n^{5}+7\right)=R_{11}\left(\left(R_{11}(n)\right)^{5}+7\right)$ and $R_{11}\left(m^{2}\right)=R_{11}\left(\left(R_{11}(m)\right)^{2}\right)$. By trying all ten possibilities for $R_{11}(n)$ and, respectively, for $R_{11}(m)$, we get that $R_{11}\left(n^{5}+7\right) \in\{6,7,8\}$ and $R_{11}\left(m^{2}\right) \in\{0,1,3,4,5,9\}$. Since these sets are disjoint, $n^{5}+7$ cannot be equal to m^{2}.

7.7 Modular Arithmetic

a) Take any even $n \geq 0$ and let $k \in \mathbb{N}$ be such that $n=2 k$. By Corollary 4.17 , we have $R_{7}\left(13^{n}+6\right)=R_{7}\left(R_{7}(13)^{n}+6\right)=R_{7}\left(R_{7}(-1)^{n}+6\right)=R_{7}\left((-1)^{n}+6\right)=R_{7}\left((-1)^{2 k}+6\right)=$ $R_{7}(7)=0$. Hence, $7 \mid 13^{n}+6$.
b) Let $a, e, m, n \in \mathbb{N} \backslash\{0\}$ and assume that $R_{m}\left(a^{e}\right)=1$. By Theorem 4.1, there exists a $q \in \mathbb{N}$, such that $n=q e+R_{e}(n)$. Therefore,

$$
\begin{aligned}
R_{m}\left(a^{n}\right) & =R_{m}\left(a^{q e+R_{e}(n)}\right) \\
& =R_{m}\left(\left(a^{e}\right)^{q} \cdot a^{R_{e}(n)}\right) \\
& =R_{m}\left(\left(R_{m}\left(a^{e}\right)\right)^{q} \cdot R_{m}\left(a^{R_{e}(n)}\right)\right) \\
& =R_{m}\left(1^{q} \cdot R_{m}\left(a^{R_{e}(n)}\right)\right) \\
& =R_{m}\left(R_{m}(1)^{q} \cdot R_{m}\left(a^{R_{e}(n)}\right)\right) \\
& =R_{m}\left(a^{R_{e}(n)}\right)
\end{aligned}
$$

(Corollary 4.17)

$$
\left(R_{m}\left(a^{e}\right)=1\right)
$$

(Corollary 4.17)
c) By Subtask b), $R_{13}\left(4^{2020}\right)=R_{13}\left(4^{R_{6}(2020)}\right)=R_{13}\left(4^{4}\right)$. Now we have $4^{4} \equiv_{13} 16^{2} \equiv{ }_{13}$ $3^{2} \equiv{ }_{13} 9$.

