Diskrete Mathematik

Solution 6

6.1 An Equivalence Relation

- **a)** We prove that \sim satisfies all properties of an equivalence relation.
 - **Reflexivity:** For any point $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, we have $(x, y) \sim (x, y)$, because one can choose $\lambda = 1$ in the definition of \sim .
 - **Symmetry:** Let $x_1, y_1, x_2, y_2 \in \mathbb{R} \setminus \{0\}$ and assume that $(x_1, y_1) \sim (x_2, y_2)$. It follows that $x_1 = \lambda x_2$ and $y_1 = \lambda y_2$ for some $\lambda > 0$. Hence, $x_2 = \frac{1}{\lambda} x_1$ and $y_2 = \frac{1}{\lambda} y_1$, where $\frac{1}{\lambda} > 0$. Therefore, $(x_2, y_2) \sim (x_1, y_1)$.
 - **Transitivity:** Let $x_1, y_1, x_2, y_2, x_3, y_3 \in \mathbb{R} \setminus \{0\}$ and assume that $(x_1, y_1) \sim (x_2, y_2)$ and $(x_2, y_2) \sim (x_3, y_3)$. This means that $(x_1, y_1) = (\lambda_1 x_2, \lambda_1 y_2)$ and $(x_2, y_2) = (\lambda_2 x_3, \lambda_2 y_3)$ for some $\lambda_1, \lambda_2 > 0$. It follows that $(x_1, y_1) = (\lambda x_3, \lambda y_3)$, where $\lambda > 0$ is defined as $\lambda_1 \lambda_2$. Hence, $(x_1, y_1) \sim (x_3, y_3)$.
- **b)** An equivalence class $[(x, y)]_{\sim}$ contains all points on the ray through the origin (0, 0) and the point (x, y) (excluding the origin). Note that no equivalence class can contain the origin (0, 0) (\sim is only defined on $\mathbb{R}^2 \setminus \{(0, 0)\}$).

6.2 Composition of Equivalence Relations

We prove that $\rho \circ \sigma$ satisfies all properties of an equivalence relation.

Reflexivity: For any $a \in A$, we have $a \rho a$ and $a \sigma a$ by the reflexivity of ρ and σ . Hence, $a (\rho \circ \sigma) a$ by the definition of \circ .

Transitivity: For any $a, b, c \in A$, we have

$$\begin{array}{ll} (a,b), (b,c) \in \rho \circ \sigma \\ \implies (a,x) \in \rho, (x,b) \in \sigma, (b,y) \in \rho \text{ and } (y,c) \in \sigma & (\text{def. of } \circ) \\ \text{for some } x, y \in A \\ \implies (a,x) \in \rho, (x,y) \in \sigma \circ \rho \text{ and } (y,c) \in \sigma & (\text{def. of } \circ) \\ \text{for some } x, y \in A \\ \implies (a,x) \in \rho, (x,y) \in \rho \circ \sigma \text{ and } (y,c) \in \sigma & (\rho \circ \sigma = \sigma \circ \rho) \\ \text{for some } x, y \in A \\ \implies (a,x) \in \rho, (x,z) \in \rho \text{ and } (z,y) \in \sigma, (y,c) \in \sigma & (\text{def. of } \circ) \\ \text{for some } x, y, z \in A \\ \implies (a,z) \in \rho \text{ and } (z,c) \in \sigma \text{ for some } z \in A & (\text{trans. of } \rho, \sigma) \\ \implies (a,c) \in \rho \circ \sigma & (\text{def. of } \circ) \end{array}$$

Symmetry: For any $a, b \in A$, we have

6.3 Lifting an Operation to Equivalence Classes

a) We define the function sum : $A^2 \rightarrow A$ by

$$\mathsf{sum}((a,b),(c,d)) \stackrel{\text{def}}{=} (ad + bc, bd).$$

Observe that $bd \neq 0$ since $b \neq 0$ and $d \neq 0$.

b) f is θ -consistent if and only if

$$(b_1 \ \theta \ b'_1 \ \text{and} \ b_2 \ \theta \ b'_2) \implies f(b_1, b_2) \ \theta \ f(b'_1, b'_2)$$

is true for all $b_1, b_2, b'_1, b'_2 \in B$. Alternatively (and equivalently) we could say that f is θ -consistent if and only if

$$([b_1]_{\theta} = [b'_1]_{\theta} \text{ and } [b_2]_{\theta} = [b'_2]_{\theta}) \implies [f(b_1, b_2)]_{\theta} = [f(b'_1, b'_2)]_{\theta}$$

is true for all $b_1, b_2, b_1', b_2' \in B$.

c) Let $(a, b), (a', b'), (c, d), (c', d') \in A$ be arbitrary. We have

$$\begin{array}{ll} (a,b) \sim (a',b') \mbox{ and } (c,d) \sim (c',d') \\ \Leftrightarrow ab' = ba' \mbox{ and } cd' = dc' & (def. \sim) \\ \implies ab' \cdot dd' + cd' \cdot bb' = ba' \cdot dd' + dc' \cdot bb' \\ \Leftrightarrow ad \cdot b'd' + bc \cdot b'd' = bd \cdot a'd' + bd \cdot b'c' & (comm.) \\ \Leftrightarrow (ad + bc) \cdot b'd' = bd \cdot (a'd' + b'c') & (distr.) \\ \Leftrightarrow (ad + bc, bd) \sim (a'd' + b'c', b'd') & (def. \sim) \\ \Leftrightarrow sum((a,b), (c,d)) \sim sum((a',b'), (c',d')). & (def. sum) \end{array}$$

Hence, sum is \sim -consistent.

6.4 Partial Order Relations

- a) i) 11 and 12 are incomparable, since 11 / 12 and 12 / 11.
 ii) 4 and 6 are incomparable, since 4 / 6 and 6 / 4.
 iii) 5 and 15 are comparable, since 5 | 15.
 iv) 42 and 42 are comparable, since 42 | 42.
- **b)** The elements $(a,b) \in A$, such that $(a,b) \leq_{\mathsf{lex}} (2,5)$ are: (2,1), (2,5) and (1,n) for all $n \in \mathbb{N} \setminus \{0\}$.

Justification: Let $(a, b) \in A$. We distinguish the following cases:

Case a = 1: Since $1 \mid 2$, we have $(a, b) \leq_{\mathsf{lex}} (2, 5)$ for any b.

Case a = 2: Since 1 and 5 are the only natural numbers which divide 5, we have $(a, b) \leq_{\mathsf{lex}} (2, 5)$ only for $b \in \{1, 5\}$.

Case a > 2: Since $a \not| 2$, $(a, b) \leq_{\mathsf{lex}} (2, 5)$ cannot hold for any b.

- c) $(\{1,3,6,9,12\}, |)$ is not a lattice, since 9 and 12 do not have a common upper bound.
- **d)** $(A; \stackrel{\frown}{\preceq})$ is a poset. To prove this, we show that $\stackrel{\frown}{\preceq}$ is a partial order on *A*.

Reflexivity: For any $a \in A$, by the reflexivity of \preceq , we have $a \preceq a$, hence, $a \stackrel{\frown}{\preceq} a$.

Antisymmetry: Let $a, b \in A$ be such that $a \preceq b$ and $b \preceq a$. This means that $b \preceq a$ and $a \preceq b$ By the antisymmetry of \preceq , it follows that a = b.

Transitivity: Let $a, b, c \in A$ be such that $a \stackrel{\frown}{\preceq} b$ and $b \stackrel{\frown}{\preceq} c$. This means that $b \preceq a$ and $c \preceq b$. By the transitivity of \preceq , we have $c \preceq a$. Hence, $a \stackrel{\frown}{\preceq} c$.

6.5 Hasse Diagrams

a) The Hasse diagrams of the posets $(\{1, 2, 3\}; \leq)$ and $(\{1, 2, 3, 5, 6, 9\}; \mid)$ are as follows:

In both cases, 1 is the least and the only minimal element. In the poset $(\{1, 2, 3\}; \leq)$, the greatest and the only maximal element is 3. In the poset $(\{1, 2, 3, 5, 6, 9\}; |)$ there is no greatest element. The maximal elements in this poset are 5, 6 and 9.

6.6 The Lexicographic Order

For posets $(A; \preceq)$ and $(B; \sqsubseteq)$ the lexicographic order \leq_{lex} on $A \times B$ is defined by

$$(a_1, b_1) \leq_{\mathsf{lex}} (a_2, b_2) :\iff a_1 \prec a_2 \lor (a_1 = a_2 \land b_1 \sqsubseteq b_2)$$

We show that \leq_{lex} is a partial order relation.

- **Reflexivity:** Take any $(a_1, b_1) \in A \times B$. Since \sqsubseteq is reflexive, we have $b_1 \sqsubseteq b_1$. Hence, it is true that $(a_1 = a_1 \land b_1 \sqsubseteq b_1)$ and, thus, $(a_1, b_1) \leq_{\mathsf{lex}} (a_1, b_1)$.
- Antisymmetry: Take any (a_1, b_1) and (a_2, b_2) in $A \times B$ such that $(a_1, b_1) \leq_{\mathsf{lex}} (a_2, b_2)$ and $(a_2, b_2) \leq_{\mathsf{lex}} (a_1, b_1)$. This means that

$$\underbrace{a_1 \prec a_2}_{(1)} \lor \underbrace{(a_1 = a_2 \land b_1 \sqsubseteq b_2)}_{(2)} \quad \text{and} \quad \underbrace{a_2 \prec a_1}_{(3)} \lor \underbrace{(a_2 = a_1 \land b_2 \sqsubseteq b_1)}_{(4)}$$

We have to show that $(a_1, b_1) = (a_2, b_2)$. The proof proceeds by case distinction.

- (1) and (3): We have $a_1 \leq a_2 \land a_1 \neq a_2$ and $a_2 \leq a_1 \land a_2 \neq a_1$. But since \leq is antisymmetric, it follows that $a_1 = a_2$, which is a contradiction with $a_1 \neq a_2$. Therefore, this case cannot occur.
- (1) and (4): We have $a_1 \leq a_2 \land a_1 \neq a_2$ and $a_2 = a_1 \land b_2 \sqsubseteq b_1$, which is a contradiction. Therefore, this case also cannot occur.
- (2) and (3): We have $a_1 = a_2 \wedge b_1 \sqsubseteq b_2$ and $a_2 \preceq a_1 \wedge a_2 \neq a_1$, which is a contradiction. Therefore, this case cannot occur as well.
- (2) and (4): We have $a_1 = a_2 \wedge b_1 \sqsubseteq b_2$ and $a_2 = a_1 \wedge b_2 \sqsubseteq b_1$. Since \sqsubseteq is antisymmetric, it follows that $b_1 = b_2$. But we also have $a_1 = a_2$ and, thus, $(a_1, b_1) = (a_2, b_2)$.
- **Transitivity:** Take any $(a_1, b_1), (a_2, b_2), (a_3, b_3)$ in $A \times B$ such that $(a_1, b_1) \leq_{\mathsf{lex}} (a_2, b_2)$ and $(a_2, b_2) \leq_{\mathsf{lex}} (a_3, b_3)$. This means that

$$\underbrace{a_1 \prec a_2}_{(1)} \lor \underbrace{(a_1 = a_2 \land b_1 \sqsubseteq b_2)}_{(2)} \quad \text{and} \quad \underbrace{a_2 \prec a_3}_{(3)} \lor \underbrace{(a_2 = a_3 \land b_2 \sqsubseteq b_3)}_{(4)}.$$

We have to show that $(a_1, b_1) \leq_{\mathsf{lex}} (a_3, b_3)$. The proof proceeds by case distinction.

(1) and (3): We have $a_1 \prec a_2$ and $a_2 \prec a_3$. Since \preceq is transitive we have $a_1 \preceq a_3$. Moreover, if we had $a_1 = a_3$, the antisymmetry of \preceq would imply that $a_1 = a_2$, a contradiction to $a_1 \prec a_2$. Thus, $a_1 \neq a_3$, and therefore $a_1 \prec a_3$. Hence, $(a_1, b_1) \leq_{\mathsf{lex}} (a_3, b_3)$.

- (1) and (4): We have $a_1 \prec a_2$ and $a_2 = a_3 \land b_2 \sqsubseteq b_3$. Hence, $a_1 \prec a_3$ and, therefore, $(a_1, b_1) \leq_{\mathsf{lex}} (a_3, b_3)$.
- (2) and (3): We have $a_1 = a_2 \wedge b_1 \sqsubseteq b_2$ and $a_2 \prec a_3$. Hence, $a_1 \prec a_3$ and, therefore, $(a_1, b_1) \leq_{\mathsf{lex}} (a_3, b_3)$.
- (2) and (4): We have $a_1 = a_2 \wedge b_1 \sqsubseteq b_2$ and $a_2 = a_3 \wedge b_2 \sqsubseteq b_3$. It follows that $a_1 = a_3$. Since \sqsubseteq is transitive, we also have $b_1 \sqsubseteq b_3$. Therefore, $(a_1, b_1) \leq_{\mathsf{lex}} (a_3, b_3)$.

6.7 Inverses of Functions

We prove the two implications separately.

(\implies) Let g be a function such that $g \circ f = id$. We show that f is injective. Assume that f(a) = f(b) for some $a, b \in A$. Then

$$a = (g \circ f)(a) \qquad (g \circ f = id)$$
$$= g(f(a)) \qquad (def. \circ)$$
$$= g(f(b)) \qquad (f(a) = f(b))$$
$$= (g \circ f)(b) \qquad (def. \circ)$$
$$= b \qquad (g \circ f = id)$$

(\Leftarrow) Assume that *f* is injective. We construct a function *g* such that $g \circ f = id$ as follows. For any $b \in Im(f)$, by the injectivity of *f*, there exists a unique *a* such that f(a) = b, and we define g(b) = a. For $b \notin Im(f)$, we define g(b) = b. We have $g \circ f = id$, because for any $a \in A$, $f(a) \in Im(f)$, so g(f(a)) = a.

Note: The choice g(b) = b in case $b \notin \text{Im}(f)$ is irrelevant. For example, we could set $g(b) = a_0$ for some fixed $a_0 \in A$.