Diskrete Mathematik Solution 6

6.1 An Equivalence Relation

a) We prove that \sim satisfies all properties of an equivalence relation.

Reflexivity: For any point $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$, we have $(x, y) \sim(x, y)$, because one can choose $\lambda=1$ in the definition of \sim.
Symmetry: Let $x_{1}, y_{1}, x_{2}, y_{2} \in \mathbb{R} \backslash\{0\}$ and assume that $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$. It follows that $x_{1}=\lambda x_{2}$ and $y_{1}=\lambda y_{2}$ for some $\lambda>0$. Hence, $x_{2}=\frac{1}{\lambda} x_{1}$ and $y_{2}=\frac{1}{\lambda} y_{1}$, where $\frac{1}{\lambda}>0$. Therefore, $\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right)$.
Transitivity: Let $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3} \in \mathbb{R} \backslash\{0\}$ and assume that $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{3}, y_{3}\right)$. This means that $\left(x_{1}, y_{1}\right)=\left(\lambda_{1} x_{2}, \lambda_{1} y_{2}\right)$ and $\left(x_{2}, y_{2}\right)=$ $\left(\lambda_{2} x_{3}, \lambda_{2} y_{3}\right)$ for some $\lambda_{1}, \lambda_{2}>0$. It follows that $\left(x_{1}, y_{1}\right)=\left(\lambda x_{3}, \lambda y_{3}\right)$, where $\lambda>0$ is defined as $\lambda_{1} \lambda_{2}$. Hence, $\left(x_{1}, y_{1}\right) \sim\left(x_{3}, y_{3}\right)$.
b) An equivalence class $[(x, y)]_{\sim}$ contains all points on the ray through the origin $(0,0)$ and the point (x, y) (excluding the origin). Note that no equivalence class can contain the origin $(0,0)\left(\sim\right.$ is only defined on $\left.\mathbb{R}^{2} \backslash\{(0,0)\}\right)$.

6.2 Composition of Equivalence Relations

We prove that $\rho \circ \sigma$ satisfies all properties of an equivalence relation.
Reflexivity: For any $a \in A$, we have $a \rho a$ and $a \sigma a$ by the reflexivity of ρ and σ. Hence, $a(\rho \circ \sigma) a$ by the definition of \circ.

Transitivity: For any $a, b, c \in A$, we have

$$
\begin{array}{rlrl}
(a, b), & (b, c) \in \rho \circ \sigma & & \\
& \Longrightarrow & (a, x) \in \rho,(x, b) \in \sigma,(b, y) \in \rho \text { and }(y, c) \in \sigma & \\
& \text { (der some } x, y \in A & \\
\Longrightarrow & (a, x) \in \rho,(x, y) \in \sigma \circ \rho \text { and }(y, c) \in \sigma & & \\
& \text { for some } x, y \in A & \\
\Longrightarrow & (a, x) \in \rho,(x, y) \in \rho \circ \sigma \text { and }(y, c) \in \sigma & (\rho \circ \sigma=\sigma \circ \rho) \\
& \text { for some } x, y \in A & \\
\Longrightarrow & (a, x) \in \rho,(x, z) \in \rho \text { and }(z, y) \in \sigma,(y, c) \in \sigma & & \text { (def. of } \circ \text {) } \\
& \text { for some } x, y, z \in A & \\
\Longrightarrow & (a, z) \in \rho \text { and }(z, c) \in \sigma \text { for some } z \in A & & \text { (trans. of } \rho, \sigma) \\
\Longrightarrow & (a, c) \in \rho \circ \sigma & & \text { (def. of } \circ)
\end{array}
$$

Symmetry: For any $a, b \in A$, we have

$$
\begin{array}{rlr}
(a, b) & \in \rho \circ \sigma & \\
& \Longleftrightarrow(a, b) \in \sigma \circ \rho & (\rho \circ \sigma=\sigma \circ \rho) \\
& \Longleftrightarrow(a, x) \in \sigma \text { and }(x, b) \in \rho \text { for some } x \in A & \text { (def. of } \circ) \\
& \Longleftrightarrow(x, a) \in \sigma \text { and }(b, x) \in \rho \text { for some } x \in A & \text { (symm. of } \rho, \sigma) \\
& \Longleftrightarrow(b, a) \in \rho \circ \sigma & \text { (def. of } \circ)
\end{array}
$$

6.3 Lifting an Operation to Equivalence Classes

a) We define the function sum : $A^{2} \rightarrow A$ by

$$
\operatorname{sum}((a, b),(c, d)) \stackrel{\text { def }}{=}(a d+b c, b d) .
$$

Observe that $b d \neq 0$ since $b \neq 0$ and $d \neq 0$.
b) f is θ-consistent if and only if

$$
\left(b_{1} \theta b_{1}^{\prime} \text { and } b_{2} \theta b_{2}^{\prime}\right) \Longrightarrow f\left(b_{1}, b_{2}\right) \theta f\left(b_{1}^{\prime}, b_{2}^{\prime}\right)
$$

is true for all $b_{1}, b_{2}, b_{1}^{\prime}, b_{2}^{\prime} \in B$. Alternatively (and equivalently) we could say that f is θ-consistent if and only if

$$
\left(\left[b_{1}\right]_{\theta}=\left[b_{1}^{\prime}\right]_{\theta} \text { and }\left[b_{2}\right]_{\theta}=\left[b_{2}^{\prime}\right]_{\theta}\right) \Longrightarrow\left[f\left(b_{1}, b_{2}\right)\right]_{\theta}=\left[f\left(b_{1}^{\prime}, b_{2}^{\prime}\right)\right]_{\theta}
$$

is true for all $b_{1}, b_{2}, b_{1}^{\prime}, b_{2}^{\prime} \in B$.
c) Let $(a, b),\left(a^{\prime}, b^{\prime}\right),(c, d),\left(c^{\prime}, d^{\prime}\right) \in A$ be arbitrary. We have

$$
\begin{array}{rlr}
(a, b) & \sim\left(a^{\prime}, b^{\prime}\right) \text { and }(c, d) \sim\left(c^{\prime}, d^{\prime}\right) \\
& \Longleftrightarrow a b^{\prime}=b a^{\prime} \text { and } c d^{\prime}=d c^{\prime} & \text { (def. } \sim \text {) } \\
& \Longleftrightarrow a b^{\prime} \cdot d d^{\prime}+c d^{\prime} \cdot b b^{\prime}=b a^{\prime} \cdot d d^{\prime}+d c^{\prime} \cdot b b^{\prime} \\
& \Longleftrightarrow a d \cdot b^{\prime} d^{\prime}+b c \cdot b^{\prime} d^{\prime}=b d \cdot a^{\prime} d^{\prime}+b d \cdot b^{\prime} c^{\prime} \\
& \Longleftrightarrow(a d+b c) \cdot b^{\prime} d^{\prime}=b d \cdot\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right) & \text { (comm.) } \\
& \Longleftrightarrow(a d+b c, b d) \sim\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right) \\
& \Longleftrightarrow \operatorname{sum}((a, b),(c, d)) \sim \operatorname{sum}\left(\left(a^{\prime}, b^{\prime}\right),\left(c^{\prime}, d^{\prime}\right)\right) .
\end{array}
$$

Hence, sum is \sim-consistent.

6.4 Partial Order Relations

a) i) 11 and 12 are incomparable, since 11×12 and 12×11.
ii) 4 and 6 are incomparable, since $4 \nless 6$ and $6 \not \backslash 4$.
iii) 5 and 15 are comparable, since $5 \mid 15$.
iv) 42 and 42 are comparable, since $42 \mid 42$.
b) The elements $(a, b) \in A$, such that $(a, b) \leq_{\text {lex }}(2,5)$ are: $(2,1),(2,5)$ and $(1, n)$ for all $n \in \mathbb{N} \backslash\{0\}$.
Justification: Let $(a, b) \in A$. We distinguish the following cases:
Case $a=1$: Since $1 \mid 2$, we have $(a, b) \leq_{\text {lex }}(2,5)$ for any b.
Case $a=2$: Since 1 and 5 are the only natural numbers which divide 5 , we have $(a, b) \leq_{\text {lex }}(2,5)$ only for $b \in\{1,5\}$.
Case $a>2$: Since $a \nless 2,(a, b) \leq_{\text {lex }}(2,5)$ cannot hold for any b.
c) $(\{1,3,6,9,12\}, \mid)$ is not a lattice, since 9 and 12 do not have a common upper bound.

Reflexivity: For any $a \in A$, by the reflexivity of \preceq, we have $a \preceq a$, hence, $a \preceq a$.
Antisymmetry: Let $a, b \in A$ be such that $a \widehat{\preceq} b$ and $b \widehat{\preceq} a$. This means that $b \preceq a$ and $a \preceq b$ By the antisymmetry of \preceq, it follows that $a=b$.
Transitivity: Let $a, b, c \in A$ be such that $a \widehat{\preceq} b$ and $b \widehat{\preceq}$. This means that $b \preceq a$ and $c \preceq b$. By the transitivity of \preceq, we have $c \preceq a$. Hence, $a \preceq c$.

6.5 Hasse Diagrams

a) The Hasse diagrams of the posets $(\{1,2,3\} ; \leq)$ and $(\{1,2,3,5,6,9\} ; \mid)$ are as follows:

In both cases, 1 is the least and the only minimal element. In the poset $(\{1,2,3\} ; \leq)$, the greatest and the only maximal element is 3 . In the poset $(\{1,2,3,5,6,9\} ; \mid)$ there is no greatest element. The maximal elements in this poset are 5,6 and 9 .

6.6 The Lexicographic Order

For posets $(A ; \preceq)$ and ($B ; \sqsubset$) the lexicographic order $\leq_{\text {lex }}$ on $A \times B$ is defined by

$$
\left(a_{1}, b_{1}\right) \leq_{\operatorname{lex}}\left(a_{2}, b_{2}\right): \Longleftrightarrow a_{1} \prec a_{2} \vee\left(a_{1}=a_{2} \wedge b_{1} \sqsubseteq b_{2}\right)
$$

We show that $\leq_{\text {lex }}$ is a partial order relation.
Reflexivity: Take any $\left(a_{1}, b_{1}\right) \in A \times B$. Since \sqsubseteq is reflexive, we have $b_{1} \sqsubseteq b_{1}$. Hence, it is true that ($a_{1}=a_{1} \wedge b_{1} \sqsubseteq b_{1}$) and, thus, $\left(a_{1}, b_{1}\right) \leq \operatorname{lex}\left(a_{1}, b_{1}\right)$.

Antisymmetry: Take any $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ in $A \times B$ such that $\left(a_{1}, b_{1}\right) \leq_{\text {lex }}\left(a_{2}, b_{2}\right)$ and $\left(a_{2}, b_{2}\right) \leq_{\text {lex }}\left(a_{1}, b_{1}\right)$. This means that

We have to show that $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$. The proof proceeds by case distinction.
(1) and (3): We have $a_{1} \preceq a_{2} \wedge a_{1} \neq a_{2}$ and $a_{2} \preceq a_{1} \wedge a_{2} \neq a_{1}$. But since \preceq is antisymmetric, it follows that $a_{1}=a_{2}$, which is a contradiction with $a_{1} \neq a_{2}$. Therefore, this case cannot occur.
(1) and (4): We have $a_{1} \preceq a_{2} \wedge a_{1} \neq a_{2}$ and $a_{2}=a_{1} \wedge b_{2} \sqsubseteq b_{1}$, which is a contradiction. Therefore, this case also cannot occur.
(2) and (3): We have $a_{1}=a_{2} \wedge b_{1} \sqsubseteq b_{2}$ and $a_{2} \preceq a_{1} \wedge a_{2} \neq a_{1}$, which is a contradiction. Therefore, this case cannot occur as well.
(2) and (4): We have $a_{1}=a_{2} \wedge b_{1} \sqsubseteq b_{2}$ and $a_{2}=a_{1} \wedge b_{2} \sqsubseteq b_{1}$. Since \sqsubseteq is antisymmetric, it follows that $b_{1}=b_{2}$. But we also have $a_{1}=a_{2}$ and, thus, $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$.

Transitivity: Take any $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)$ in $A \times B$ such that $\left(a_{1}, b_{1}\right) \leq_{\operatorname{lex}}\left(a_{2}, b_{2}\right)$ and $\left(a_{2}, b_{2}\right) \leq_{\text {lex }}\left(a_{3}, b_{3}\right)$. This means that

$$
\underbrace{a_{1} \prec a_{2}}_{(1)} \vee \underbrace{\left(a_{1}=a_{2} \wedge b_{1} \sqsubseteq b_{2}\right)}_{(2)} \text { and } \underbrace{a_{2} \prec a_{3}}_{(3)} \vee \underbrace{\left(a_{2}=a_{3} \wedge b_{2} \sqsubseteq b_{3}\right)}_{(4)} \text {. }
$$

We have to show that $\left(a_{1}, b_{1}\right) \leq_{\text {lex }}\left(a_{3}, b_{3}\right)$. The proof proceeds by case distinction.
(1) and (3): We have $a_{1} \prec a_{2}$ and $a_{2} \prec a_{3}$. Since \preceq is transitive we have $a_{1} \preceq a_{3}$. Moreover, if we had $a_{1}=a_{3}$, the antisymmetry of \preceq would imply that $a_{1}=a_{2}$, a contradiction to $a_{1} \prec a_{2}$. Thus, $a_{1} \neq a_{3}$, and therefore $a_{1} \prec a_{3}$. Hence, $\left(a_{1}, b_{1}\right) \leq_{\text {lex }}\left(a_{3}, b_{3}\right)$.
(1) and (4): We have $a_{1} \prec a_{2}$ and $a_{2}=a_{3} \wedge b_{2} \sqsubseteq b_{3}$. Hence, $a_{1} \prec a_{3}$ and, therefore, $\left(a_{1}, b_{1}\right) \leq_{\text {lex }}\left(a_{3}, b_{3}\right)$.
(2) and (3): We have $a_{1}=a_{2} \wedge b_{1} \sqsubseteq b_{2}$ and $a_{2} \prec a_{3}$. Hence, $a_{1} \prec a_{3}$ and, therefore, $\left(a_{1}, b_{1}\right) \leq_{\text {lex }}\left(a_{3}, b_{3}\right)$.
(2) and (4): We have $a_{1}=a_{2} \wedge b_{1} \sqsubseteq b_{2}$ and $a_{2}=a_{3} \wedge b_{2} \sqsubseteq b_{3}$. It follows that $a_{1}=a_{3}$. Since \sqsubseteq is transitive, we also have $b_{1} \sqsubseteq b_{3}$. Therefore, $\left(a_{1}, b_{1}\right) \leq_{\operatorname{lex}}\left(a_{3}, b_{3}\right)$.

6.7 Inverses of Functions

We prove the two implications separately.
(\Longrightarrow) Let g be a function such that $g \circ f=\mathrm{id}$. We show that f is injective. Assume that $f(a)=f(b)$ for some $a, b \in A$. Then

$$
\begin{aligned}
a & =(g \circ f)(a) & (g \circ f=\mathrm{id}) \\
& =g(f(a)) & (\text { def. } \circ) \\
& =g(f(b)) & (f(a)=f(b)) \\
& =(g \circ f)(b) & (\text { def. } \circ) \\
& =b & (g \circ f=\mathrm{id})
\end{aligned}
$$

(\Longleftarrow) Assume that f is injective. We construct a function g such that $g \circ f=$ id as follows. For any $b \in \operatorname{Im}(f)$, by the injectivity of f, there exists a unique a such that $f(a)=b$, and we define $g(b)=a$. For $b \notin \operatorname{Im}(f)$, we define $g(b)=b$. We have $g \circ f=\mathrm{id}$, because for any $a \in A, f(a) \in \operatorname{Im}(f)$, so $g(f(a))=a$.
Note: The choice $g(b)=b$ in case $b \notin \operatorname{Im}(f)$ is irrelevant. For example, we could set $g(b)=a_{0}$ for some fixed $a_{0} \in A$.

