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Diskrete Mathematik

Solution 6

6.1 An Equivalence Relation
a) We prove that ~ satisfies all properties of an equivalence relation.

Reflexivity: For any point (z,y) € R?\ {(0,0)}, we have (z,y) ~ (,y), because one
can choose A = 1 in the definition of ~.

Symmetry: Let z1,y1,22,y2 € R\ {0} and assume that (z1,y1) ~ (z2,y2). It follows
that 21 = Azp and y; = Ayo for some A > 0. Hence, 22 = }z1 and y2 = 31,
where % > 0. Therefore, (x2,y2) ~ (x1,y1).

Transitivity: Let x1,y1, 22,92, 23,y3 € R\ {0} and assume that (z1,y1) ~ (z2,2)
and (z2,y2) ~ (x3,y3). This means that (z1,y1) = (AMix2, A\1y2) and (z2,y2) =
(Aax3, Aays) for some A1, Ao > 0. It follows that (z1,y1) = (A3, \y3), where
A > 0is defined as A1 A\2. Hence, (z1,y1) ~ (23, y3).

b) An equivalence class [(z,y)]~ contains all points on the ray through the origin (0, 0)
and the point (z,y) (excluding the origin). Note that no equivalence class can contain
the origin (0, 0) (~ is only defined on R? \ {(0,0)}).

6.2 Composition of Equivalence Relations
We prove that p o o satisfies all properties of an equivalence relation.

Reflexivity: For any a € A, we have a p a and a o a by the reflexivity of p and o. Hence,
a (p o o) a by the definition of o.



Transitivity: For any a,b,c € A, we have

(a,b),(b,c) € poo

= (a,x) € p, (z,b) € 0,(b,y) € pand (y,c) € o (def. of o)
for some x,y € A

= (a,z) € p, (x,y) Ecopand (y,c) €Ec (def. of o)
forsome z,y € A

= (a,x) € p, (z,y) € pooand (y,c) €0 (poo=0o0p)
for some z,y € A

= (a,x) € p, (z,2) € pand (z,y) € 0, (y,¢) €0 (def. of o)
for some x,y,z € A

= (a,z) € pand (z,c¢) € o forsome z € A (trans. of p, o)

= (a,c) €poo (def. of o)

Symmetry: For any a,b € A, we have

(a,b) € poo
— (a,b)eoop (poo=00p)
<= (a,z) € o and (z,b) € pforsomex € A (def. of o)
<= (z,a) € oand (b,x) € pforsomex € A (symm. of p, o)
< (b,a)€poo (def. of o)

6.3 Lifting an Operation to Equivalence Classes
a) We define the function sum : 4> — Aby
def
sum((a,b), (¢,d)) = (ad + be, bd).

Observe that bd # 0 since b # 0 and d # 0.
b) f is f-consistent if and only if

(bl 0 bll and bg 0 6/2) — f(bl,bg) 0 f( /17b/2)

is true for all by, b, b}, b € B. Alternatively (and equivalently) we could say that f is
-consistent if and only if

([balo = [b1]o and [bo]p = [b5]g) == [f(D1,b2)]o = [f(b7,b2)]e

is true for all by, by, V), b}, € B.



o) Let (a,b),(d,V),(c,d),(c,d) € Abe arbitrary. We have
(a,b) ~ (a',V)and (c,d) ~ (¢, d)

<= ab/ = ba’ and cd’ = dc’ (def. ~)
= ab -dd' +cd - bV = ba' - dd' + dc’ - bb’

< ad-b'd +bc-Vd =bd-d'd +bd- -V (comm.)
< (ad+bc) - V'd =bd- (a'd +V') (distr.)
<= (ad+bc,bd) ~ (d'd +Vc,b'd) (def. ~)
< sum((a,b), (c,d)) ~ sum((d’,V'),(c,d)). (def. sum)

Hence, sum is ~-consistent.

6.4 Partial Order Relations
a) i) 11 and 12 are incomparable, since 11 f12 and 12 J 11.
ii) 4 and 6 are incomparable, since 4 /6 and 6 [ 4.
iii) 5 and 15 are comparable, since 5 | 15.

iv) 42 and 42 are comparable, since 42 | 42.
b) The elements (a,b) € A, such that (a,b) <, (2,5) are: (2,1),(2,5) and (1, n) for all
n € N\ {0}.
Justification: Let (a,b) € A. We distinguish the following cases:
Case a = 1: Since 1 | 2, we have (a, b) < (2,5) for any b.
Case ¢ = 2: Since 1 and 5 are the only natural numbers which divide 5, we have
(a,b) <iex (2,5) only for b € {1,5}.
Case a > 2: Since a [ 2, (a,b) < (2,5) cannot hold for any b.
o ({1,3,6,9,12}, | ) is not a lattice, since 9 and 12 do not have a common upper bound.
d) (4; 3) is a poset. To prove this, we show that 3 is a partial order on A.
Reflexivity: For any a € A, by the reflexivity of <, we have a < a, hence, a=a.

Antisymmetry: Let a,b € A be such that a=b and b=a. This means that b < a and
a =< b By the antisymmetry of =, it follows that a = b.

Transitivity: Let a,b,c € A be such that a=b and b=c. This means that b < a and
¢ = b. By the transitivity of <, we have ¢ < a. Hence, a=c.

6.5 Hasse Diagrams

a) The Hasse diagrams of the posets ({1, 2,3}; <) and ({1, 2,3,5,6,9}; | ) are as follows:
6\ 9
2 3
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In both cases, 1 is the least and the only minimal element. In the poset ({1, 2, 3}; <),
the greatest and the only maximal element is 3. In the poset ({1,2,3,5,6,9}; | ) there
is no greatest element. The maximal elements in this poset are 5,6 and 9.

6.6 The Lexicographic Order
For posets (A4; <) and (B; C) the lexicographic order <iex on A x B is defined by

(a1,b01) <jex (ag,b2) <= a1 < az V(a1 = a2 Ab; C by)

We show that <, is a partial order relation.

Reflexivity: Take any (a;1,b1) € A x B. Since L is reflexive, we have b; T b;. Hence, it is
true that (a1 = a3 A by C by) and, thus, (a1, b1) <iex (a1,b1).

Antisymmetry: Take any (a1,b1) and (a2, b2) in A x B such that (a1, b1) <jex (a2,b2) and
(a2,b2) <iex (a1, b1). This means that

a1<a2\/(a1:a2/\b1§b2) and a2<a1\/(a2:a1/\bggbl).
S~—— S~——
1) (2) 3) (4)

We have to show that (a1, b1) = (a2, b2). The proof proceeds by case distinction.

(1) and (3): We have a; < as A a1 # az and ag < a; A ay # aj. But since < is
antisymmetric, it follows that a; = ag, which is a contradiction with a; # as.
Therefore, this case cannot occur.

(1) and (4): Wehave a; < ag A a; # az and ag = a;Abe C by, which is a contradiction.
Therefore, this case also cannot occur.

(2) and (3): Wehavea; = agAb; C beand ag < a; A ag # a1, which is a contradiction.
Therefore, this case cannot occur as well.

(2) and (4): Wehave a; = aa/Ab; T by and ag = a1 Aby C by. Since C is antisymmetric,
it follows that b; = be. But we also have a; = ag and, thus, (a1, b1) = (az, b2).

Transitivity: Take any (aq,b1), (a2, b2), (a3, bs) in A x B such that (a1,b1) <jex (ag2,b2) and
(a2,b2) <iex (a3, b3). This means that

a1<a2\/(a1:a2/\b1§b2) and a2<a3\/(a2:a3/\bggbg).
~———r ~———
1) (2) 3) (4)

We have to show that (a1, 1) <jex (a3, b3). The proof proceeds by case distinction.

(1) and (3): We have a; < a2 and ag < a3. Since =< is transitive we have a; =< as.
Moreover, if we had a; = a3, the antisymmetry of < would imply that a; = as,
a contradiction to a; < ae. Thus, a; # a3, and therefore a; < a3. Hence,
(a1,b1) <iex (a3, b3).



(1) and (4): We have a; < a2 and a2 = a3 A ba C bs. Hence, a1 < a3 and, therefore,
(a1,b1) <iex (a3,b3).

(2) and (3): We have a; = a2 A by C be and a2 < as. Hence, a1 < a3 and, therefore,
(a1,b1) <iex (a3, b3).

(2) and (4): We have a; = az A by C by and ag = as A be C bs. It follows that a; = as.
Since L is transitive, we also have b; C bs. Therefore, (a1,b1) <jex (a3, b3).

6.7 Inverses of Functions

We prove the two implications separately.

( =) Let g be a function such that g o f = id. We show that f is injective. Assume that
f(a) = f(b) for some a,b € A. Then

a=(gof)la) (gof=id)
=g9(f(a)) (def. o)
=g(f(®)  (f(a) = f(b))
= (g0 f)(b) (def. o)
=b (go f=1id)

( <= ) Assume that f is injective. We construct a function g such that g o f = id as follows.
For any b € Im(f), by the injectivity of f, there exists a unique a such that f(a) = b, and
we define g(b) = a. For b ¢ Im(f), we define g(b) = b. We have g o f = id, because for any
a€ A, fla) € Im(f),sog(f(a)) = a.

Note: The choice g(b) = bin case b ¢ Im(f) is irrelevant. For example, we could set g(b) = ao for some fixed
aop € A.
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