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6.1 An Equivalence Relation

a) We prove that ∼ satisfies all properties of an equivalence relation.

Reflexivity: For any point (x, y) ∈ R2 \ {(0, 0)}, we have (x, y) ∼ (x, y), because one
can choose λ = 1 in the definition of ∼.

Symmetry: Let x1, y1, x2, y2 ∈ R \ {0} and assume that (x1, y1) ∼ (x2, y2). It follows
that x1 = λx2 and y1 = λy2 for some λ > 0. Hence, x2 = 1

λx1 and y2 = 1
λy1,

where 1
λ > 0. Therefore, (x2, y2) ∼ (x1, y1).

Transitivity: Let x1, y1, x2, y2, x3, y3 ∈ R \ {0} and assume that (x1, y1) ∼ (x2, y2)
and (x2, y2) ∼ (x3, y3). This means that (x1, y1) = (λ1x2, λ1y2) and (x2, y2) =
(λ2x3, λ2y3) for some λ1, λ2 > 0. It follows that (x1, y1) = (λx3, λy3), where
λ > 0 is defined as λ1λ2. Hence, (x1, y1) ∼ (x3, y3).

b) An equivalence class [(x, y)]∼ contains all points on the ray through the origin (0, 0)
and the point (x, y) (excluding the origin). Note that no equivalence class can contain
the origin (0, 0) (∼ is only defined on R2 \ {(0, 0)}).

6.2 Composition of Equivalence Relations

We prove that ρ ◦ σ satisfies all properties of an equivalence relation.

Reflexivity: For any a ∈ A, we have a ρ a and a σ a by the reflexivity of ρ and σ. Hence,
a (ρ ◦ σ) a by the definition of ◦.



Transitivity: For any a, b, c ∈ A, we have

(a, b), (b, c) ∈ ρ ◦ σ
=⇒ (a, x) ∈ ρ, (x, b) ∈ σ, (b, y) ∈ ρ and (y, c) ∈ σ (def. of ◦)

for some x, y ∈ A
=⇒ (a, x) ∈ ρ, (x, y) ∈ σ ◦ ρ and (y, c) ∈ σ (def. of ◦)

for some x, y ∈ A
=⇒ (a, x) ∈ ρ, (x, y) ∈ ρ ◦ σ and (y, c) ∈ σ (ρ ◦ σ = σ ◦ ρ)

for some x, y ∈ A
=⇒ (a, x) ∈ ρ, (x, z) ∈ ρ and (z, y) ∈ σ, (y, c) ∈ σ (def. of ◦)

for some x, y, z ∈ A
=⇒ (a, z) ∈ ρ and (z, c) ∈ σ for some z ∈ A (trans. of ρ, σ)
=⇒ (a, c) ∈ ρ ◦ σ (def. of ◦)

Symmetry: For any a, b ∈ A, we have

(a, b) ∈ ρ ◦ σ
⇐⇒ (a, b) ∈ σ ◦ ρ (ρ ◦ σ = σ ◦ ρ)
⇐⇒ (a, x) ∈ σ and (x, b) ∈ ρ for some x ∈ A (def. of ◦)
⇐⇒ (x, a) ∈ σ and (b, x) ∈ ρ for some x ∈ A (symm. of ρ, σ)
⇐⇒ (b, a) ∈ ρ ◦ σ (def. of ◦)

6.3 Lifting an Operation to Equivalence Classes

a) We define the function sum : A2 → A by

sum((a, b), (c, d))
def
= (ad+ bc, bd).

Observe that bd 6= 0 since b 6= 0 and d 6= 0.

b) f is θ-consistent if and only if

(b1 θ b
′
1 and b2 θ b′2) =⇒ f(b1, b2) θ f(b

′
1, b
′
2)

is true for all b1, b2, b′1, b
′
2 ∈ B. Alternatively (and equivalently) we could say that f is

θ-consistent if and only if

([b1]θ = [b′1]θ and [b2]θ = [b′2]θ) =⇒ [f(b1, b2)]θ = [f(b′1, b
′
2)]θ

is true for all b1, b2, b′1, b
′
2 ∈ B.



c) Let (a, b), (a′, b′), (c, d), (c′, d′) ∈ A be arbitrary. We have

(a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′)

⇐⇒ ab′ = ba′ and cd′ = dc′ (def. ∼)
=⇒ ab′ · dd′ + cd′ · bb′ = ba′ · dd′ + dc′ · bb′

⇐⇒ ad · b′d′ + bc · b′d′ = bd · a′d′ + bd · b′c′ (comm.)
⇐⇒ (ad+ bc) · b′d′ = bd · (a′d′ + b′c′) (distr.)
⇐⇒ (ad+ bc, bd) ∼ (a′d′ + b′c′, b′d′) (def. ∼)
⇐⇒ sum((a, b), (c, d)) ∼ sum((a′, b′), (c′, d′)). (def. sum)

Hence, sum is ∼-consistent.

6.4 Partial Order Relations

a) i) 11 and 12 are incomparable, since 11 6 | 12 and 12 6 | 11.
ii) 4 and 6 are incomparable, since 4 6 | 6 and 6 6 | 4.
iii) 5 and 15 are comparable, since 5 | 15.
iv) 42 and 42 are comparable, since 42 | 42.

b) The elements (a, b) ∈ A, such that (a, b) ≤lex (2, 5) are: (2, 1), (2, 5) and (1, n) for all
n ∈ N \ {0}.
Justification: Let (a, b) ∈ A. We distinguish the following cases:

Case a = 1: Since 1 | 2, we have (a, b) ≤lex (2, 5) for any b.
Case a = 2: Since 1 and 5 are the only natural numbers which divide 5, we have

(a, b) ≤lex (2, 5) only for b ∈ {1, 5}.
Case a > 2: Since a 6 | 2, (a, b) ≤lex (2, 5) cannot hold for any b.

c) ({1, 3, 6, 9, 12}, | ) is not a lattice, since 9 and 12 do not have a common upper bound.

d) (A; �̂) is a poset. To prove this, we show that �̂ is a partial order on A.

Reflexivity: For any a ∈ A, by the reflexivity of �, we have a � a, hence, a�̂a.
Antisymmetry: Let a, b ∈ A be such that a�̂b and b�̂a. This means that b � a and

a � b By the antisymmetry of �, it follows that a = b.
Transitivity: Let a, b, c ∈ A be such that a�̂b and b�̂c. This means that b � a and

c � b. By the transitivity of �, we have c � a. Hence, a�̂c.

6.5 Hasse Diagrams

a) The Hasse diagrams of the posets ({1, 2, 3};≤) and ({1, 2, 3, 5, 6, 9}; | ) are as follows:

3 6 9

2 2 3 5

1 1



In both cases, 1 is the least and the only minimal element. In the poset ({1, 2, 3};≤),
the greatest and the only maximal element is 3. In the poset ({1, 2, 3, 5, 6, 9}; | ) there
is no greatest element. The maximal elements in this poset are 5, 6 and 9.

6.6 The Lexicographic Order

For posets (A;�) and (B;v) the lexicographic order ≤lex on A×B is defined by

(a1, b1) ≤lex (a2, b2) :⇐⇒ a1 ≺ a2 ∨ (a1 = a2 ∧ b1 v b2)

We show that ≤lex is a partial order relation.

Reflexivity: Take any (a1, b1) ∈ A × B. Since v is reflexive, we have b1 v b1. Hence, it is
true that (a1 = a1 ∧ b1 v b1) and, thus, (a1, b1) ≤lex (a1, b1).

Antisymmetry: Take any (a1, b1) and (a2, b2) in A × B such that (a1, b1) ≤lex (a2, b2) and
(a2, b2) ≤lex (a1, b1). This means that

a1 ≺ a2︸ ︷︷ ︸
(1)

∨ (a1 = a2 ∧ b1 v b2)︸ ︷︷ ︸
(2)

and a2 ≺ a1︸ ︷︷ ︸
(3)

∨ (a2 = a1 ∧ b2 v b1)︸ ︷︷ ︸
(4)

.

We have to show that (a1, b1) = (a2, b2). The proof proceeds by case distinction.

(1) and (3): We have a1 � a2 ∧ a1 6= a2 and a2 � a1 ∧ a2 6= a1. But since � is
antisymmetric, it follows that a1 = a2, which is a contradiction with a1 6= a2.
Therefore, this case cannot occur.

(1) and (4): We have a1 � a2 ∧ a1 6= a2 and a2 = a1∧b2 v b1, which is a contradiction.
Therefore, this case also cannot occur.

(2) and (3): We have a1 = a2∧b1 v b2 and a2 � a1 ∧ a2 6= a1, which is a contradiction.
Therefore, this case cannot occur as well.

(2) and (4): We have a1 = a2∧b1 v b2 and a2 = a1∧b2 v b1. Sincev is antisymmetric,
it follows that b1 = b2. But we also have a1 = a2 and, thus, (a1, b1) = (a2, b2).

Transitivity: Take any (a1, b1), (a2, b2), (a3, b3) in A × B such that (a1, b1) ≤lex (a2, b2) and
(a2, b2) ≤lex (a3, b3). This means that

a1 ≺ a2︸ ︷︷ ︸
(1)

∨ (a1 = a2 ∧ b1 v b2)︸ ︷︷ ︸
(2)

and a2 ≺ a3︸ ︷︷ ︸
(3)

∨ (a2 = a3 ∧ b2 v b3)︸ ︷︷ ︸
(4)

.

We have to show that (a1, b1) ≤lex (a3, b3). The proof proceeds by case distinction.

(1) and (3): We have a1 ≺ a2 and a2 ≺ a3. Since � is transitive we have a1 � a3.
Moreover, if we had a1 = a3, the antisymmetry of � would imply that a1 = a2,
a contradiction to a1 ≺ a2. Thus, a1 6= a3, and therefore a1 ≺ a3. Hence,
(a1, b1) ≤lex (a3, b3).



(1) and (4): We have a1 ≺ a2 and a2 = a3 ∧ b2 v b3. Hence, a1 ≺ a3 and, therefore,
(a1, b1) ≤lex (a3, b3).

(2) and (3): We have a1 = a2 ∧ b1 v b2 and a2 ≺ a3. Hence, a1 ≺ a3 and, therefore,
(a1, b1) ≤lex (a3, b3).

(2) and (4): We have a1 = a2 ∧ b1 v b2 and a2 = a3 ∧ b2 v b3. It follows that a1 = a3.
Since v is transitive, we also have b1 v b3. Therefore, (a1, b1) ≤lex (a3, b3).

6.7 Inverses of Functions

We prove the two implications separately.
( =⇒ ) Let g be a function such that g ◦ f = id. We show that f is injective. Assume that
f(a) = f(b) for some a, b ∈ A. Then

a = (g ◦ f)(a) (g ◦ f = id)

= g(f(a)) (def. ◦)
= g(f(b)) (f(a) = f(b))

= (g ◦ f)(b) (def. ◦)
= b (g ◦ f = id)

(⇐= ) Assume that f is injective. We construct a function g such that g ◦ f = id as follows.
For any b ∈ Im(f), by the injectivity of f , there exists a unique a such that f(a) = b, and
we define g(b) = a. For b 6∈ Im(f), we define g(b) = b. We have g ◦ f = id, because for any
a ∈ A, f(a) ∈ Im(f), so g(f(a)) = a.
Note: The choice g(b) = b in case b 6∈ Im(f) is irrelevant. For example, we could set g(b) = a0 for some fixed
a0 ∈ A.


	An Equivalence Relation 
	Composition of Equivalence Relations
	Lifting an Operation to Equivalence Classes
	Partial Order Relations
	Hasse Diagrams
	The Lexicographic Order
	Inverses of Functions

