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Part 1: Proof Patterns

4.1 Indirect Proof of an Implication (2.6.3)

a) Assume that n is even. Then, n = 2k for some k ∈ N. We have therefore n2 = n · n =
2k · 2k = 2 · 2k2. Hence, n2 is even.

Detailed solution:
Statement S: n2 is odd.
Statement T : n is odd.
Indirect proof:
n is not odd.
=⇒ n is even.
=⇒ n = 2k for some k ∈ N.
=⇒ n · n = 2k · 2k for some k ∈ N.
=⇒ n · n = 2 · 2k2 for some k ∈ N.
=⇒ n · n = 2l for some l ∈ N.
=⇒ n2 = 2l for some l ∈ N.
=⇒ n2 is even.

b) Assume that n is even. We show that in such case 42n − 1 is not a prime. To this
end, notice that, since n is even, there must exist a natural number k > 0, such that
n = 2k. It follows that 42n − 1 = 422k − 1 = (42k + 1)(42k − 1). Therefore, we found
two non-trivial divisors of 42n − 1, namely (42k + 1) and (42k − 1) (they are greater
than 1, because k > 0). Thus, 42n − 1 cannot be a prime.

Detailed solution:
We consider two statements S and T . We have to show that S =⇒ T is true. To this end, we use an
indirect direct proof, that is, we assume that T is false and show that, under this assumption S, must
also be false.
Statement S: 42n − 1 is a prime.
Statement T : n is odd.
Indirect proof:
n is not odd.
=⇒ n is even.
=⇒ There exists a natural number, call it k, such that k > 0 and n = 2k.
=⇒ We have 42n − 1 = 422k − 1 = (42k + 1)(42k − 1) for k > 0.
=⇒ There exist two non-trivial divisors of 42n − 1, namely (42k + 1) and (42k − 1).
=⇒ 42n − 1 is not a prime.



4.2 Case Distinction (2.6.5)

a) Let n be any natural number greater or equal 0. Let n = 3k + c, where 0 ≤ c ≤ 2 and
k ∈ N. We have

n3 + 2n+ 6 = (3k + c)3 + 2(3k + c) + 6

= c3 + 9c2k + 27ck2 + 2c+ 27k3 + 6k + 6.

Each summand is divisible by 3, except the term c3 + 2c. Hence, we only need to
show that c3 + 2c is divisible by 3 for 0 ≤ c ≤ 2.

Case c = 0: c3 + 2c = 0, which is divisible by 3.

Case c = 1: c3 + 2c = 3, which is divisible by 3.

Case c = 2: c3 + 2c = 12, which is divisible by 3.

Since the above cases cover all possibilities for c, we can conclude the proof.

b) In the following, we let R3(x) denote the remainder of the division of x by 3 (for
example, R3(5) = 2). For any prime number p, we can distinguish the following
three cases:

p = 2: If p = 2, then p2 + 2 = 6 is not a prime. Thus, the claim holds for p = 2.

p = 3: If p = 3, then p2 + 2 = 11 is a prime. However, we now have p3 + 2 = 29,
which is also a prime. Thus, the claim also holds for p = 3.

p > 3: If p > 3 is a prime, then 3 cannot divide p. Therefore, we have R3(p) ∈ {1, 2}.
Thus, it holds that

R3(p
2) = R3(R3(p) ·R3(p)) = 1.

It follows that

R3(p
2 + 2) = R3(R3(p

2) +R3(2)) = R3(1 + 2) = 0

Therefore, p2 + 2 must be divisible by 3 and so it is not a prime. Thus, the claim
holds also for p > 3.

Since the above cases cover all prime numbers, the claim holds.

4.3 Proof by Contradiction (2.6.6)

a) Let x be any irrational number and let r be any rational number. Assume that s =
x + r is rational. To reach a contradiction, we show that in such case x must be
rational. Indeed, we have x = s− r. Therefore, we have that x is a difference of two
rational numbers and thus, by the fact from the hint, it must also be rational. This is
a contradiction with the assumption that x is irrational.

Detailed solution:
Consider a statement S. To show that S is true, we will state a false statement T , and show that if S is
false, then T is true.
Fix any irrational number x and any rational number r.
Statement S: The sum x+ r is irrational.



Statement T : x is rational.
Proof by contradiction:
We show that if S is false, then T is true:

S is false.
=⇒ It is not true that the sum x+ r is irrational.
=⇒ The sum s = x+ r is rational.
=⇒ x = s− r, where s and r are some rational numbers.
=⇒ x is rational. (by the fact from the hint)
=⇒ T is true.

The statement T is trivially false.

b) Assume for contradiction that 2
1
n is rational for some n > 2. That is, assume that

there exist two positive integers, call them p and q, such that 2
1
n = p

q . This implies
that 2 = pn

qn . Hence, we have qn + qn = pn, which is a contradiction with Fermat’s
Last Theorem.
The contradiction with Fermat’s Last Theorem follows from the counterexample qn + qn = pn.

Detailed solution:
Fix any integer n > 2.

Statement S: 2
1
n is irrational.

Statement T : There exist positive integers p, q such that qn + qn = pn.
Proof by contradiction:
We show that if S is false, then T is true:

S is false.
=⇒ It is not true that 2

1
n is irrational.

=⇒ 2
1
n is rational.

=⇒ There exist positive integers p and q such that 2
1
n = p

q
.

=⇒ There exist positive integers p and q such that 2 = pn

qn
.

=⇒ There exist positive integers p and q such that qn + qn = pn.
=⇒ T is true.

The statement T is false, since it is a counterexample to Fermat’s Last Theorem.

4.4 Pigeonhole Principle (2.6.8)

a) Let us consider the great circle1 passing through two of the five points. There are two
closed hemispheres, having this great circle as the border. Note that the two points
lie on both of these hemispheres. By the pigeonhole principle, two of the remaining
three points must lie on the same hemisphere (note that these hemispheres are not
disjoint). Thus, this hemisphere must contain four points (together with the two on
the great circle).

b) For every day i of November (1 ≤ i ≤ 30), let us consider the number ai of bananas
eaten by the monkey until that day (together with the day i). That is, on the first day
it ate a1 bananas, during the first two days it ate a2, and so on. Further, let bi = ai+14
for 1 ≤ i ≤ 30.
First, note that for each i ∈ {1, . . . , 30}, it holds that 1 ≤ ai < bi ≤ 59 (the last inequal-
ity follows from the fact that the monkey had only 45 bananas and 45 + 14 = 59).

1A great circle of a sphere is the largest circle that can be drawn on this sphere.



Hence, we have 60 numbers a1, . . . , a30, b1, . . . , b30, all between 1 and 59. By the pi-
geonhole principle, at least two of these numbers must be equal.
Notice now that we have a1 < a2 < · · · < a30, since the monkey ate at least one
banana every day. By the definition of bi, the same must hold for the sequence
b1, . . . , b30, that is b1 < b2 < · · · < b30. Therefore, the two equal numbers must be
ai and bj for some i, j. Note further that we must have i > j. Otherwise, we would
have ai = bj for i ≤ j. But since bj > aj , it would follow that ai > aj for i ≤ j, which
is the contradiction with the fact that a1 < a2 < · · · < a30.
Thus, we have ai = bj for some j < i. It follows that ai = 14 + aj and, hence,
ai − aj = 14. The value ai − aj is exactly the amount of bananas the monkey ate
between days j and i (including day i and excluding day j).

4.5 On the Soundness of a new Proof Pattern

a) (¬C → A) ∧ (¬C → B) ∧ ¬(A ∧B) |= C.

b) Let F = (¬C → A) ∧ (¬C → B) ∧ ¬(A ∧ B) and G = C. In order to decide whether
F |= G is true, we compute the function table of both F and G:

A B C ¬C → A ¬C → B ¬(A ∧B) F G

0 0 0 0 0 1 0 0
0 0 1 1 1 1 1 1
0 1 0 0 1 1 0 0
0 1 1 1 1 1 1 1
1 0 0 1 0 1 0 0
1 0 1 1 1 1 1 1
1 1 0 1 1 0 0 0
1 1 1 1 1 0 0 1

The function table shows that for any truth assignment for which F is true, G is true
as well. Hence, F |= G (the proof pattern is sound).

Part 2: Set Theory

4.6 Element or Subset
i) A ∈ B and A 6⊆ B ii) A ∈ B and A ⊆ B
iii) A /∈ B and A ⊆ B iv) A ∈ B and A ⊆ B

4.7 Operations on Sets

The following sets fulfill the conditions:

a) A = {∅}
For x = ∅ we have x ∈ A. Also, the empty set is the subset of any other set, so x ⊆ A.
This is not the only solution. For example, A = {7, {7}} also fulfills the given condition.

b) A = {∅, 1}
We have P(A) = {∅, {∅}, {1}, {∅, 1}}. Since 1 6∈ P(A), it holds that A 6⊆ P(A). Also,
for x = ∅ we have x ∈ A and x ⊆ P(A) (since the empty set is the subset of any set).



c) A = ∅
We have ∅ ⊆ P(A). The second requirement is trivially fulfilled, since A has no
elements.

4.8 Cardinality

First, notice that A = {∅, {∅}}. With that said, we give the solutions to individual sub-
tasks:

i) A ∪B = {∅, {∅}, {{∅}}, {∅, {∅}}}, |A ∪B| = 4

ii) A ∩B = {{∅}}, |A ∩B| = 1

iii) ∅×A = ∅, |∅×A| = 0

iv) {0} × {3, 1} = {(0, 3), (0, 1)}, |{0} × {3, 1}| = 2

v) {{1, 2}} × {3} = {({1, 2}, 3)}, |{{1, 2}} × {3}| = 1

vi) P({∅}) = {∅, {∅}}, |P({∅})| = 2
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