Diskrete Mathematik Solution 2

2.1 Interpreting Propositional Formulas in Natural Language

a) The formulas can be stated in the English language in the following way:
i) F_{1} : "The monkey has a banana and does not sit on the palm tree."
ii) F_{2} : "The monkey sits on the palm tree and has a banana, or it does not sit on the palm tree and it does not have a banana."
Equivalently, we could say "The monkey sits on the palm tree if and only if it has a banana."
b) The sentences can be written formally in the following way:
i) $F_{3}=\neg A \wedge \neg B$
ii) $F_{4}=(\neg A \wedge B) \vee(A \wedge \neg B)$
c) i) $\neg F_{3}$: The monkey sits on the palm tree or it has a banana.

$$
\neg F_{3} \equiv \neg(\neg A \wedge \neg B) \equiv A \vee B
$$

ii) $\neg F_{4}$: The monkey sits on the palm tree if and only if it has a banana.

$$
\neg F_{4} \equiv(A \wedge B) \vee(\neg A \wedge \neg B) \equiv F_{2}
$$

2.2 Logical Equivalence via Function Tables

a)

A	B	C	$B \rightarrow C$	$\neg(A \rightarrow C) \wedge \neg(A \vee B)$	$(B \rightarrow C) \rightarrow(\neg(A \rightarrow C) \wedge \neg(A \vee B))$
0	0	0	1	0	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	

b) With the above function table, it becomes clear that the formula in a) is true if and only if $B \wedge \neg C$ is true. Therefore, the simple equivalent formula is $B \wedge \neg C$.

2.3 Proving Logical Equivalence using Equivalence Transformations

We have:

$$
\begin{array}{rlrl}
& (C \wedge A) \vee((B \rightarrow A) \wedge \neg C) & \\
\equiv & (C \wedge A) \vee(\neg C \wedge(B \rightarrow A)) & \text { (commutativity of } \wedge) \\
\equiv & (C \wedge A) \vee(\neg C \wedge(\neg B \vee A)) & \text { (definition of } \rightarrow \text {) } \\
\equiv & (C \wedge A) \vee((\neg C \wedge \neg B) \vee(\neg C \wedge A)) & \text { (distributive law }(5)) \\
\equiv & (C \wedge A) \vee((\neg C \wedge A) \vee(\neg C \wedge \neg B)) & & (\text { commutativity of } \vee) \\
\equiv & ((C \wedge A) \vee(\neg C \wedge A)) \vee(\neg C \wedge \neg B)) & & \text { (associativity of } \vee) \\
\equiv & ((A \wedge C) \vee(\neg C \wedge A)) \vee(\neg C \wedge \neg B) & & \text { (commutativity of } \wedge) \\
\equiv & ((A \wedge C) \vee(A \wedge \neg C)) \vee(\neg C \wedge \neg B) & & \text { (commutativity of } \wedge) \\
\equiv & (A \wedge(C \vee \neg C)) \vee(\neg C \wedge \neg B) & & \text { (distributive law }(5)) \\
\equiv & (A \wedge \top) \vee(\neg C \wedge \neg B) & (F \vee \neg F \equiv \top) \\
\equiv & A \vee(\neg C \wedge \neg B) & (F \wedge \top \equiv F) \\
\equiv & A \vee(\neg B \wedge \neg C) & (\text { commutativity of } \wedge) \\
\equiv & A \vee \neg(B \vee C) & (\text { de Morgan, } \neg(F \vee G) \equiv \neg F \wedge \neg G)
\end{array}
$$

2.4 Logical Consequence

a) We first construct the function table for the formula $A \wedge(A \rightarrow B)$.

A	B	$A \wedge(A \rightarrow B)$
0	0	0
0	1	0
1	0	0
1	1	1

The above table shows that the truth value of $A \wedge(A \rightarrow B)$ is 1 only for the truth assignment in the last row. Clearly, B is also true for that assignment. Thus, B is the logical consequence of $A \wedge(A \rightarrow B)$ and the statement holds.
b) The statement is false. There exists a truth assignment, namely one in which A is false and B is true, for which $A \rightarrow B$ is true, but $\neg A \rightarrow \neg B$ is false.
Thus, $\neg A \rightarrow \neg B$ is not a logical consequence of $A \rightarrow B$.
c) We construct the function table for both formulas: $(A \rightarrow B) \wedge(B \rightarrow C)$ and $A \rightarrow C$.

A	B	C	$A \rightarrow B$	$B \rightarrow C$	$(A \rightarrow B) \wedge(B \rightarrow C)$	$A \rightarrow C$
0	0	0	1	1	1	1
0	0	1	1	1	1	1
0	1	0	1	0	0	1
0	1	1	1	1	1	1
1	0	0	0	1	0	0
1	0	1	0	1	0	1
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Analogously to Subtask a), we can show that the statement holds.

2.5 Satisfiability and Tautologies

a) This formula is satisfiable, since it is true for the assignment $A=0, B=1$. It is, however, not a tautology, since it is false for the assignment $A=0, B=0$.
b) This formula is unsatisfiable (hence, it is not a tautology). In order to prove this, let $F=((A \rightarrow B) \wedge(B \rightarrow C)) \wedge \neg(A \rightarrow C)$. We notice that

$$
\begin{array}{rlr}
\neg F & \equiv \neg((A \rightarrow B) \wedge(B \rightarrow C)) \vee(A \rightarrow C) & \text { (de Morgan's rules) } \\
& \equiv(A \rightarrow B) \wedge(B \rightarrow C) \rightarrow(A \rightarrow C) & (\text { def. } \rightarrow)
\end{array}
$$

From Task 2.4 c), we know that $(A \rightarrow B) \wedge(B \rightarrow C) \vDash(A \rightarrow C)$ is true. From this fact, together with Lemma 2.3, it follows that $\neg F$ is a tautology. Hence, by Lemma 2.2, F is unsatisfiable.

2.6 Knights and Knaves

Let A be the proposition "The left road leads to the village." and let B be the proposition "The islander is a knight.". We want to ask the islander about the truth value of a formula F in A and B in order to determine whether A is true.
In order to be guaranteed to learn whether A is true or not, we have to receive a fixed answer (say, "Yes") from the islander in case A is true, and the opposite (say, "No") in case A is false. This has to hold independently of whether the islander is a knight or a knave (since we have no information about that).
If the islander is a knight (B is true) the answer will be the truth value of F (since knights always tell the truth). However, if the islander is a knave (B is false) the answer will be the truth value of $\neg F$ (since knaves always lie).
Hence, we derive the following partial function table:

A	B	F	$\neg F$
0	0		0
0	1	0	
1	0		1
1	1	1	

This partial function table can be completed (uniquely) to the following function table:

A	B	F	$\neg F$
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	0

From the function table we obtain a possible formula $F=(\neg A \wedge \neg B) \vee(A \wedge B)$. Formulated as a question: "Does the left road lead to the jungle and you are a knave, or is it the case that the left road leads to the village and you are a knight?".

