Cryptographic Protocols

Exercise 12

12.1 Hyper-Invertible Matrices

Recall the definition of hyper-invertible matrices from the lecture:
Definition 1. A $r \times c$-matrix M over some field \mathbb{F} is called hyper-invertible if every square sub-matrix M_{R}^{C} of M is invertible, where, for sets $R \subseteq\{1, \ldots, r\}$ and $C \subseteq\{1, \ldots, c\}$ with $|R|=|C|>0, M_{R}^{C}$ denotes the matrix consisting of rows $i \in R$ and colums $j \in C$ of M.
a) Determine whether the following matrices are hyper-invertible:

$$
\left.\begin{array}{ll}
A & =\left[\begin{array}{lllll}
5 & 4 & 3 & 2 & 1 \\
1 & 2 & 3 & 5 & 5
\end{array}\right] \text { over } \operatorname{GF}(7)
\end{array} \quad B=\left[\begin{array}{lll}
4 & 1 & 4 \\
6 & 4 & 1 \\
3 & 1 & 1
\end{array}\right] \text { over } \operatorname{GF}(7) ~ 子 \begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 7 \\
4 & 2 & 6 \\
2 & 2 & 4
\end{array}\right] \text { over } \operatorname{GF}(11) \quad D=\left[\begin{array}{ccccc}
5 & 1 & 10 & 6 & 1 \\
1 & 6 & 0 & 1 & 5 \\
5 & 9 & 1 & 4 & 4 \\
4 & 7 & 5 & 5 & 2
\end{array}\right] \text { over GF(11) }
$$

Next, we want to show that permuting hyper-invertible matrices and multiplying columns (or rows) by constants preserves hyper-invertibility. Let $M \in \mathbb{F}^{r \times c}$ be a hyper-invertible matrix over some field \mathbb{F}.
b) Let M^{\prime} be the matrix obtained from M by exchanging the i th and j th column of M. Show that M^{\prime} is hyper-invertible.
c) Let \bar{M} be the matrix obtained from M by multiplying each entry of the i th column of M by some value $a \in \mathbb{F} \backslash\{0\}$.
Show that \bar{M} is hyper-invertible.

12.2 Properties of Hyper-Invertible Matrices

In this task we prove one direction of the lemma from the lecture: for a matrix M, which induces a linear function f, we have that M is hyper-invertible if and only if f is hyper-invertible.

Recall the definition of hyper-invertible mappings:
Definition 2. Consider a function $f: \mathbb{F}^{c} \rightarrow \mathbb{F}^{r}$, as well as some arbitrary inputs $\left(x_{1}, \ldots, x_{c}\right)$ and the corresponding function values $\left(y_{1}, \ldots, y_{r}\right)=f\left(x_{1}, \ldots, x_{c}\right)$. The function f is called hyper-invertible if for any sets $A \subseteq\{1, \ldots, c\}, B \subseteq\{1, \ldots, r\}$ with $|A|+|B|=c$, there exists a function $f^{\prime}: \mathbb{F}^{c} \rightarrow \mathbb{F}^{r}$ that maps the values $\left\{x_{i}\right\}_{i \in A},\left\{y_{i}\right\}_{i \in B}$ to the values $\left\{x_{i}\right\}_{i \in \bar{A}},\left\{y_{i}\right\}_{i \in \bar{B}}$.

Prove that any hyper-invertible matrix defines a hyper-invertible linear function.
Hint: Note that for A, B as in Definition 2 we have $\vec{y}_{B}=M_{B} \vec{x}=M_{B}^{A} \vec{x}_{A}+M_{B}^{\bar{A}} \vec{x}_{\bar{A}}$.

12.3 Beaver's Multiplication Triples

In the lecture we saw a multiplication protocol based on precomputing random double sharings. An alternative multiplication protocol can be obtained by precomputing multiplication triples, which are sharings of values (a, b, c), all shared by polynomials of degree t, where a and b are uniform random values and $c=a b$.
Let (a, b, c) be a multiplication triple. Given a share of $[x]$ and a share of $[y]$, how can a party compute a share of $[x y]$ efficiently?

