ETH Zurich, Department of Computer Science SS 2021

Cryptographic Protocols Exercise 9

9.1 Consensus: An Example

Four players P_1, \ldots, P_4 execute the **Consensus** protocol from the lecture with t=1, where P_1 is corrupted and has the following strategy: in any step of the protocol where the players are instructed to send a value to all other players, P_1 always sends the value 1 to P_2 and P_3 , and the value 0 to P_4 . Below, you can find a table with the outputs of the players in the sub-protocols in an execution of the **Consensus** protocol in the above setting.

	P_1	P_2	P_3	P_4
Input	-	1	0	0
WeakConsensus	-	\perp	\perp	0
GradedConsensus	-	(0,0)	(0,0)	(0,0)
$\mathtt{KingConsensus}_{P_1}$	-	1	1	0
WeakConsensus	-	1	1	\perp
GradedConsensus	-	(1, 1)	(1, 1)	(1, 0)
${\tt KingConsensus}_{P_2}$	-	1	1	1

a) Fill, similarly to the above example, the following tables (where the strategy of P_1 is as described above):

	P_1	P_2	P_3	P_4	
Input	-	1	1	0	Inpu
WeakConsensus	-				Weak
GradedConsensus	-				Grad
$\mathtt{KingConsensus}_{P_1}$	-				King
WeakConsensus	-				Weak
GradedConsensus	-				Grad
$\mathtt{KingConsensus}_{P_2}$	-				King

Scenario 2:				
	P_1	P_2	P_3	P_4
Input	-	1	1	1
WeakConsensus	-			
GradedConsensus	-			
$\mathtt{KingConsensus}_{P_1}$	-			
WeakConsensus	-			
GradedConsensus	-			
KingConsensus $_{P_2}$	-			

- **b)** Can P_1 make the honest parties output 0 in Scenario 1? Describe the corresponding strategy for P_1 or justify why such a strategy does not exist. What about Scenario 2?
- c) Assume that P_1, P_2 , and P_3 all have input 1 and P_4 has input 0. Use the properties of the sub-protocols to show that when at most one player is corrupted, then the construction

WeakConsensus; GradedConsensus; KingConsensus $_{P_4}$

achieves the properties of Consensus.

9.2 Variations of GradedConsensus

a) Amélie has an idea for improving the GradedConsensus protocol from the lecture: in Step 3, each player P_j computes the value y_j as follows:

$$y_j = \begin{cases} 0 & \text{if } \#\text{zeros} \ge n - t \\ 1 & \text{otherwise.} \end{cases}$$

What do you think about this suggestion? Prove or disprove whether the new protocol achieves GRADED CONSENSUS.

b) Cindy also has a suggestion, where y_j is computed as follows:

$$y_j = \begin{cases} 0 & \text{if } \#\text{zeros} > t, \\ 1 & \text{if } \#\text{ones} > t, \\ \text{random} & \text{otherwise.} \end{cases}$$

What do you think about Cindy's suggestion? Is the new protocol well-defined? Prove or disprove whether the new protocol achieves GRADED CONSENSUS.

c) Hans has yet another idea: compute y_j as in the protocol from the lecture, but g_j is computed as follows:

$$g_j = \begin{cases} 1 & \text{if } \# y_j \text{'s} > n/2, \\ 0 & \text{otherwise.} \end{cases}$$

Prove or disprove whether Hans' protocol achieves GRADED CONSENSUS.

9.3 Two-Threshold Consensus

In the lecture, we have seen a consensus protocol based on the phase-king paradigm. In each of the phases, the persistency and consistency properties hold simultaneously as long as at most t parties are corrupted, for any $t < \frac{n}{3}$.

In this exercise, we consider separate thresholds for persistency and for consistency. More precisely, we want the protocol to achieve persistency as long as at most t_p parties are corrupted (t_p -persistency), and consistency as long as at most t_c parties are corrupted (t_c -consistency).

a) Consider the weak consensus protocol presented in the lecture, where t can be seen as a protocol parameter:

Protocol WeakConsensus $(x_1, \ldots, x_n) \to (y_1, \ldots, y_n)$: 1. $\forall P_i$: send x_i to each P_j 2. $\forall P_j$: $y_j = \begin{cases} 0 & \text{if } \# \text{zeros} \ge n - t \\ 1 & \text{if } \# \text{ones} \ge n - t \\ \bot & \text{else} \end{cases}$ 3. $\forall P_j$: return y_j

For a fixed t, find the thresholds t_p such that the above protocol achieves t_p -persistency. Repeat the analysis for t_c -consistency. Give a condition on t_p and t_c such that one can set the parameter t to achieve simultaneously t_p -persistency and t_c -consistency.

b) (Optional) Analyze the protocol graded consensus with separate thresholds t_p for persistency and t_c for consistency.