ETH Zurich, Department of Computer Science SS 2021

Prof. Ueli Maurer Dr. Martin Hirt Konstantin Gegier Chen-Da Liu Zhang

Cryptographic Protocols Exercise 8

8.1 Trusted Party Operations

In the lecture we consider a trusted party who can receive inputs, give outputs, and perform addition and multiplication over a field \mathbb{F} . In this exercise, we investigate how the trusted party can perform further operations. Consider a field \mathbb{F} with $|\mathbb{F}| = p$ for a prime p.

- a) An instruction we would like the trusted party to be able to do is to generate a secret random value. How can this be achieved?
- b) Given a value $x \in \mathbb{F}$, how can the trusted party compute x^{-1} ? What happens when x = 0? How many multiplications are evaluated? HINT: Use Fermat's Little theorem.
- c) Consider a trusted party who can also generate secret random values. Design a more efficient way to compute the inverse operation. What happens when x = 0? HINT: Generate a random value r, compute and reveal $y = x \cdot r$.
- d) Let $x, y, c \in \mathbb{F}$. Consider the following instruction:

$$z = \begin{cases} x & \text{if } c = 0\\ y & \text{otherwise} \end{cases}$$

How can the trusted party compute this instruction? HINT: First, find a solution that works for $c \in \{0, 1\}$. Then, solve the general case.

8.2 Shamir Sharings

Let \mathbb{F} be a finite field and $\alpha_1, \ldots, \alpha_n$ be fixed, distinct values in $\mathbb{F} \setminus \{0\}$.

- a) Let s_1, \ldots, s_n be arbitrary values in \mathbb{F} . Show that there exists a *unique* polynomial $f \in \mathbb{F}[X]$ of degree at most n-1 that goes through the points (α_i, s_i) .
- b) Show that any subset of at most t players have no information about a secret that is Shamir-shared with a polynomial of degree at most t.
- c) Consider a 3-party setting with an adversary that passively corrupts P_2 . Let $a \in GF(5)$ be the input of P_1 and $b \in GF(5)$ that of P_3 . Assume a and b are shared via polynomials of degree at most t = 1 with $\alpha_1 = 1$, $\alpha_2 = 2$, and $\alpha_3 = 3$ as evaluation points. Suppose that the players, to compute c = ab, locally multiply their shares and then open the product. Show that, given the shares of c (obtained when c was reconstructed) and the shares of player P_2 , the adversary can determine a and b.
- d) In an alternative sharing protocol, the dealer chooses a random sharing polynomial g with degree *exactly t*. Show that the alternative sharing protocol is not private, i.e., that it gives away information about the secret to the adversary.

Hint: Consider the case where the adversary corrupts t players.