Cryptographic Protocols Exercise 7

7.1 Protocols and Specifications

Parties P_{1} and P_{2} hold input bits x_{1} and x_{2}, respectively. They want that P_{2} learns the AND of their inputs.

```
Specification 1
P
    P
    TTP sends }y=\mp@subsup{x}{1}{}\mathrm{ to }\mp@subsup{P}{2}{}\mathrm{ .
    : P}\mp@subsup{P}{2}{}\mathrm{ outputs }y\mathrm{ .
```

```
Specification 2
\(P_{1}\left(\right.\) resp. \(\left.P_{2}\right)\) holds input bit \(x_{1}\) (resp. \(x_{2}\) ).
1: \(P_{1}\) (resp. \(P_{2}\) ) sends \(x_{1}\) (resp. \(x_{2}\) ) to TTP.
    TTP sends \(y=x_{1} \wedge x_{2}\) to \(P_{2}\).
    \(P_{2}\) outputs \(y\).
```


Protocol 3

P_{1} holds input bit x_{1}, P_{2} holds input bit x_{2}.
: P_{1} sends x_{1} to P_{2}.
P_{2} computes $y=x_{1} \wedge x_{2}$.
P_{2} outputs y.
a) Does Protocol 3 satisfy Specification 1 in the case where both parties are honest? What about Specification 2?
b) Does Protocol 3 satisfy Specification 2 when the adversary passively corrupts P_{2} ? What if the adversary actively corrupts P_{2} ?

Now consider three parties P_{1}, P_{2} and P_{3} with input bits x_{1}, x_{2} and x_{3}, respectively. They want that P_{1} and P_{3} learn the AND of the three inputs.
Specification 4
P_{1} (resp. P_{2}, P_{3}) has input bit x_{1} (resp. x_{2}, x_{3})
: Each party P_{i} sends x_{i} to TTP.
TTP sends $y=x_{1} \wedge x_{2} \wedge x_{3}$ to P_{1} and P_{3}.
P_{1} and P_{3} output y.

Protocol 5

P_{1} (resp. P_{2}, P_{3}) has input bit x_{1} (resp. x_{2}, x_{3})
1: P_{1} sends x_{1} to P_{2}.
2: $\quad P_{2}$ sends $y_{2}=x_{1} \wedge x_{2}$ to P_{3}.
3: P_{3} sends $y_{3}=y_{2} \wedge x_{3}$ to P_{1}.
4: P_{1} and P_{3} output y_{3}.
c) Does Protocol 5 satisfy Specification 4 when the adversary passively corrupts P_{1} and P_{2} ? What about P_{1} and P_{3} ? Is there a subset of players the adversary can passively corrupt so that the protocol is secure? For the same sets of corrupted players, analyze the protocol when the adversary is active.

7.2 Types of Oblivious Transfer

Oblivious transfer (OT) comes in several variants:

- Rabin OT: Alice transmits a bit b to Bob, who receives b with probability $1 / 2$ while Alice does not know which is the case. That is, the output of Bob is either b or \perp (indicating that the bit was not received).
- 1-out-of-2 OT: Alice holds two bits b_{0} and b_{1}. For a bit $c \in\{0,1\}$ of Bob's choice, he can learn b_{c} but not b_{1-c}, and Alice does not learn c.
- 1-out-of-k OT for $k>2$: Alice holds k bits b_{1}, \ldots, b_{k}. For $c \in\{1, \ldots, k\}$ of Bob's choice, he can learn b_{c} but none of the others, and Alice does not learn c.

Prove the equivalence of these three variants, by providing the following reductions:
a) 1-out-of- $k \mathrm{OT} \Longrightarrow 1$-out-of-2 OT
b) 1-out-of- $2 \mathrm{OT} \Longrightarrow 1$-out-of- k OT

Hint: In your protocol, the sender should choose k random bits and invoke the 1 -out-of-2 OT protocol k times.
c) 1-out-of- $2 \Longrightarrow$ Rabin OT
d) Rabin $\mathrm{OT} \Longrightarrow 1$-out-of-2 OT

Hint: Use Rabin OT to send sufficiently many random bits. In your protocol, the receiver might learn both bits, but with negligible probability only.

7.3 Multi-Party Computation with Oblivious Transfer

In the lecture, it was shown that 1-out-of- k oblivious string transfer (OST) can be used by two parties A and B to securely evaluate an arbitrary function $g: \mathbb{Z}_{m}^{2} \rightarrow \mathbb{Z}_{m}$.
a) Generalize the above protocol to the case of three parties A, B, and C, with inputs $x, y, z \in \mathbb{Z}_{m}$, respectively, who wish to compute a function $f: \mathbb{Z}_{m}^{3} \rightarrow \mathbb{Z}_{m}$.
Hint: Which strings should A send to B via OT? Which entry should B choose, and which strings should he send to C via OT?
b) Is your protocol from a) secure against a passive adversary? If not, give an example of a function f where some party receives too much information by executing the protocol.
c) Modify your protocol to make it secure against a passive adversary.

