Cryptographic Protocols Solution to Exercise 12

12.1 Hyper-Invertible Matrices

a) Matrices A and B are hyper-invertible, since all square sub-matrices are invertible. Matrix C is not hyper-invertible, as can be seen by e.g. determining

$$
\operatorname{det}\left(\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 7 \\
4 & 2 & 6
\end{array}\right]\right)=0
$$

Matrix D is not hyper-invertible, since e.g. the sub-matrix $[0]$ is not invertible.
b) Let $C \subseteq\{1, \ldots, c\}, R \subseteq\{1, \ldots, r\}$ with $|C|=|R|>0$. We have 4 cases: Case $i, j \notin C$: We have $M_{R}^{\prime C}=M_{R}^{C}$, thus $M_{R}^{\prime C}$ is invertible.
Case $i, j \in C$: Let $i(j)$ be the k-th smallest (l-th smallest) number in C. Then we have $M_{R}^{\prime C}=M_{R}^{C} P$, where P is the permutation matrix for the transposition $(k l)$.
Case $i \in C, j \notin C$: Let i be the k-th smallest number in C, j be the l-th smallest number in $C^{\prime}=(C \backslash\{i\}) \cup\{j\}$. Then we have $M_{R}^{\prime} C=M_{R}^{C^{\prime}} P$, where P is the permutation matrix for the cycle $(l l+1 \ldots k)$, if $l \leq k$ and for the cycle $(k k+1 \ldots l)$ otherwise.
The case $j \in C, i \notin C$ is analogous to the previous.
c) Let $C \subseteq\{1, \ldots, c\}, R \subseteq\{1, \ldots, r\}$ with $|C|=|R|>0$. We have two cases:

Case $i \notin C$: We have $M_{R}^{\prime C}=M_{R}^{C}$, thus $M_{R}^{\prime C}$ is invertible.
Case $i \in C$: Let i be the k-th smallest number in C. Then we have $M_{R}^{\prime} C=M_{R}^{C} D$, where $D=\left(d_{l m}\right)_{1 \leq l, m \leq|C|}$ is the diagonal matrix with $d_{l m}=\left\{\begin{array}{l}0, \text { if } l \neq m \\ a, \text { if } l=m=k \\ 1, \text { otherwise }\end{array}\right.$.

12.2 Properties of Hyper-Invertible Matrices

Consider a hyper-invertible matrix M. Denote by $f: \mathbb{F}^{c} \rightarrow \mathbb{F}^{r}$ the linear function defined by M and let $\vec{y}=\left(y_{1}, \ldots, y_{r}\right)=f\left(x_{1}, \ldots, x_{c}\right)$ for arbitrary values $\vec{x}=\left(x_{1}, \ldots, x_{c}\right) \in \mathbb{F}^{c}$. Consider two sets $A \subseteq\{1, \ldots, c\}, B \subseteq\{1, \ldots, r\}$ with $|A|+|B|=c$. Then, we have $\vec{y}=M \vec{x}$ and $\vec{y}_{B}=M_{B} \vec{x}=M_{B}^{A} \vec{x}_{A}+M_{B}^{\bar{A}} \vec{x}_{\vec{A}}$. Since M is hyper-invertible, $M_{B}^{\bar{A}}$ is invertible, and $\vec{x}_{\bar{A}}=\left(M_{B}^{\bar{A}}\right)^{-1}\left(\vec{y}_{B}-M_{B}^{A} \vec{x}_{A}\right)$. The remaining values $\vec{y}_{\bar{B}}$ can be computed from \vec{x}.

12.3 Beaver's Multiplication Triples

Assume that we are given sharings of x and y and want to compute a sharing of $x y$. Let a, b, c be a multiplication triple. The party computes a sharing of $x-a$ and $y-b$ and reconstruct $\alpha=x-a$ and $\beta=y-b$. Observe that since a, b are uniformly random, α and β are also random values. Moreover, observe that $x y=a b+\alpha b+a \beta+\alpha \beta$, and hence each player P_{i} can compute locally a degree- t-sharing of $x y$ as follows: $[x y]_{i}=[c]_{i}+$ $\alpha[b]_{i}+\beta[a]_{i}+\alpha \beta$. Observe that only two reconstructions (and some local computation) are needed to execute this protocol.

