ETH Zurich, Department of Computer Science SS 2021

Prof. Ueli Maurer Dr. Martin Hirt Konstantin Gegier Chen-Da Liu Zhang

Cryptographic Protocols Solution to Exercise 12

12.1 Hyper-Invertible Matrices

a) Matrices A and B are hyper-invertible, since all square sub-matrices are invertible. Matrix C is not hyper-invertible, as can be seen by e.g. determining

$$det\left(\begin{bmatrix}1&2&3\\3&4&7\\4&2&6\end{bmatrix}\right) = 0.$$

Matrix D is not hyper-invertible, since e.g. the sub-matrix [0] is not invertible.

b) Let $C \subseteq \{1, \ldots, c\}$, $R \subseteq \{1, \ldots, r\}$ with |C| = |R| > 0. We have 4 cases: Case $i, j \notin C$: We have $M_R^{'C} = M_R^C$, thus $M_R^{'C}$ is invertible. Case $i, j \in C$: Let i (j) be the k-th smallest (l-th smallest) number in C. Then we have $M_R^{'C} = M_R^C P$, where P is the permutation matrix for the transposition (kl). Case $i \in C, j \notin C$: Let i be the k-th smallest number in C, j be the l-th smallest number in $C' = (C \setminus \{i\}) \cup \{j\}$. Then we have $M_R^{'C} = M_R^{C'} P$, where P is the permutation matrix for the cycle $(l \ l+1 \ldots k)$, if $l \leq k$ and for the cycle $(k \ k+1 \ldots l)$ otherwise.

The case $j \in C, i \notin C$ is analogous to the previous.

c) Let $C \subseteq \{1, \ldots, c\}, R \subseteq \{1, \ldots, r\}$ with |C| = |R| > 0. We have two cases: Case $i \notin C$: We have $M_R^{'C} = M_R^C$, thus $M_R^{'C}$ is invertible. Case $i \in C$: Let i be the k-th smallest number in C. Then we have $M_R^{'C} = M_R^C D$, where $D = (d_{lm})_{1 \leq l,m \leq |C|}$ is the diagonal matrix with $d_{lm} = \begin{cases} 0, \text{ if } l \neq m \\ a, \text{ if } l = m = k \\ 1, \text{ otherwise} \end{cases}$.

12.2 Properties of Hyper-Invertible Matrices

Consider a hyper-invertible matrix M. Denote by $f : \mathbb{F}^c \to \mathbb{F}^r$ the linear function defined by M and let $\vec{y} = (y_1, \ldots, y_r) = f(x_1, \ldots, x_c)$ for arbitrary values $\vec{x} = (x_1, \ldots, x_c) \in \mathbb{F}^c$. Consider two sets $A \subseteq \{1, \ldots, c\}, B \subseteq \{1, \ldots, r\}$ with |A| + |B| = c. Then, we have $\vec{y} = M\vec{x}$ and $\vec{y}_B = M_B\vec{x} = M_B^A\vec{x}_A + M_B^A\vec{x}_A$. Since M is hyper-invertible, M_B^A is invertible, and $\vec{x}_A = (M_B^A)^{-1}(\vec{y}_B - M_B^A\vec{x}_A)$. The remaining values \vec{y}_B can be computed from \vec{x} .

12.3 Beaver's Multiplication Triples

Assume that we are given sharings of x and y and want to compute a sharing of xy. Let a, b, c be a multiplication triple. The party computes a sharing of x - a and y - b and reconstruct $\alpha = x - a$ and $\beta = y - b$. Observe that since a, b are uniformly random, α and β are also random values. Moreover, observe that $xy = ab + \alpha b + a\beta + \alpha\beta$, and hence each player P_i can compute locally a degree-*t*-sharing of xy as follows: $[xy]_i = [c]_i + \alpha[b]_i + \beta[a]_i + \alpha\beta$. Observe that only two reconstructions (and some local computation) are needed to execute this protocol.