ETH Zurich, Department of Computer Science SS 2021

Prof. Ueli Maurer Dr. Martin Hirt Konstantin Gegier Chen-Da Liu Zhang

Cryptographic Protocols Solution to Exercise 11

11.1 Information-Theoretic Commitment Transfer Protocol

- a) At the end of protocol COMMIT, there exists a polynomial g of degree at most t. If the dealer is honest, then he outputs g, and g(0) is the committed value s. Every honest party P_i outputs the commit-share $s_i = g(\alpha_i)$.
- b) The commitment transfer protocol CTP allows to transfer a commitment from a player P to a player P' The protocol works as follows:
 - 1. P sends the polynomial g to P'.
 - 2. Each P_i sends s_i to P'.
 - 3. P' checks that the degree of g is at most t, and that all but at most t of the received s_i 's lie on g. If so, he accepts g(0) as value for s, otherwise he assumes that he did not receive any value for s.

The above protocol is secure for t < n/3:

PRIVACY: Straight-forward as only P' receives values in the protocol and he only obtains the values which he is supposed to receive.

CORRECTNESS: This can be argued along the lines of the correctness of the protocol OPEN from the lecture notes: Assume that P sends P' some wrong polynomial $g' \neq g$. Then, at most t of the commit shares can lie on polynomial g'. Hence the commit shares of at least n - t players do not lie on g'. As at most t of those players might be corrupted, there are at least n - 2t > t players who will send commit shares that do not lie on g' to P', and therefore P' will not accept g(0) as value for s.

11.2 Information-Theoretic Commitment Multiplication Protocol

In the following we will use f_a and f_b to denote the polynomials used in the commitment sharing protocol (CSP) to share the values a and b, respectively. Furthermore, let $f_c := f_a \cdot f_b$.

a) We show that correctness and privacy are satisfied:

PRIVACY: In steps 1-2, privacy is guaranteed by the privacy of the CSP, i.e., no information on a, b, and c is revealed in these steps. In step 3, the players only see values they already know, namely $c_i = a_i \cdot b_i$, hence again no information is revealed. Finally, the commitments to some a_i, b_i , and c_i are opened only if D or the player P_i is corrupted, which means that the adversary already knows them.

CORRECTNESS: Any dealer who is not disqualified must successfully complete the CSP for values a and b. Thus, every player P_i ends up with shares a_i on f_a and b_i on f_b . Suppose, D commits to a value $c' \neq c$ and shares it using a polynomial

 $f_{c'} \neq f_c = f_a \cdot f_b$ in protocol CSP.¹ Since both f_c and $f_{c'}$ have degree at most 2t, they can have at most 2t points in common. Thus, there exists at least one honest player P_i for which $c'_i \neq a_i b_i$, where c'_i is his share of c'.² This player will accuse the dealer and prove that he is corrupted by opening a_i , b_i , and c_i .

- b) Let n = 3t, and assume that the players P_1, \ldots, P_t are corrupted, where P_1 plays the role of D. In order to achieve that at the end of the protocol the players accept a false $c' \neq ab$, the corrupted players have the following strategy:
 - 1. In step 0, D chooses c' (instead of c) and is committed to it.
 - 2. Step 1 is executed normally, i.e., D invokes the CSP for a and b.
 - 3. In step 2, D invokes the CSP for c', with the (unique) degree-2t polynomial $f_{c'}(x)$, such that $f_{c'}(0) = c'$ and

$$f_{c'}(\alpha_i) = f_a(\alpha_i) \cdot f_b(\alpha_i)$$

for i = t + 1, ..., n.

4. The corrupted players do not complain in step 3.

As $f_{c'}(x)$ is chosen such that it satisfies the consistency check for all honest players, no player will complain and the commitment to c' will be accepted.

11.3 Information-Theoretic Commit Protocol

Let *H* denote the set of honest parties and A_i denote the set of parties accusing the dealer in Round *i* (for $i \in \{1, 2\}$).

Consider the set X of honest parties that do not accuse the dealer in the first round of accusations, i.e., $X = H \setminus A_1$. Observe that these parties must have pairwise consistent polynomials $h_i(x)$ and $k_i(y)$. In order to see this, assume that two honest parties P_i and P_j have received inconsistent polynomials in Step 1, e.g., $h_i(\alpha_j) \neq k_j(\alpha_i)$. Then P_i and/or P_j complain (in Step 2), and P_i and/or P_j accuse in Step 3.

Furthermore, we have $|H| \ge 2t + 1$, and $|A_1| \le t$ (or the dealer is disqualified), and so $|X| \ge t + 1$. Hence, the polynomials $h_i(x)$ and $k_i(y)$ of the parties in X define a unique degree-t polynomial f'(x, y).

Now consider an accusation in Round 1 of some $P_i \in A_1$, then the dealer must broadcast the polynomials $h_i(x)$ and $k_i(y)$. We focus on $h_i(x)$, but the same holds also for $k_i(y)$. The polynomial $h_i(x)$ is either in f'(x, y), i.e., $h_i(x) = f'(x, \alpha_i)$, or it has at most t points in common with $f'(x, \alpha_i)$. In the first case, no honest party will accuse in Round 2, and in the second case, at least |X| - t honest parties will accuse in Round 2. However, if there are |X| - t accusations in the second round and $|A_1| \ge |H| - |X| \ge 2t + 1 - |X|$ accusations in the first round, then the dealer is disqualified.

¹Note that the dealer cannot share c' using f_c as can easily be seen by inspecting the CSP.

²The condition t < n/3 implies that there are at least 2t + 1 honest players.