
ETH Zurich, Department of Computer Science
SS 2021

Prof. Ueli Maurer
Dr. Martin Hirt

Konstantin Gegier
Chen-Da Liu Zhang

Cryptographic Protocols

Solution to Exercise 10

10.1 Not Sending Values

Note first that, given at least t+ 1 of the n shares, a` can be computed using Lagrange
interpolation. That is, let S ⊆ {1, . . . , n} \ {`} with |S| ≥ t+ 1. Then,

a` =
∑
j∈S

wjaj where wj =
∏
k∈S
k 6=j

α` − αk
αj − αk

.

Since the weights wj are constant, a` is a linear function of the shares aj for j ∈ S.

The above leads to the following protocol idea: Each player Pi re-shares his share ai as
[ai] = (ai1, . . . , ain) among the players. This is followed by an accusation phase to make
sure that all honest players agree on the same set S of players who have performed the
re-sharing. Then, the players compute a sharing of a` (using only local operations on
their respective shares) as shown above and reconstruct the value.

The actual protocol:

1. Sharing: Every player Pi shares his share ai among all players. Let aij denote
Pj ’s share of ai.

2. Accusations: If a player Pj does not receive his share aij from some player Pi,
then Pj complains about this by broadcasting an accusation. As an answer, Pi
must broadcast the value aij . If Pi does not do so, he is disqualified. Denote by S
the set of players that have not been disqualified.

3. Computing the share of a`: Every player Pi (locally) computes his share a`i of
the value a` as follows:

a`i =
∑
j∈S

wjaji where wj =
∏
k∈S
k 6=j

α` − αk
αj − αk

.

4. Reconstructing a`: Every Pi sends his share a`i to all other players. Let Si
denote the set of players from which Pi has received a share. Pi computes a` as
follows:

a` =
∑
j∈Si

wja`j where wj =
∏
k∈Si
k 6=j

αk
αk − αj

.

It is important that all (honest) players choose the same set S (as done in Step 2).
Otherwise, they would execute Step 3 on different sharings and reconstruction would
not work anymore. It is easy to verify that this protocol does not violate privacy.

10.2 ElGamal Commitments

a) We are to show that the commitment function

C : Zq × Zq → G×G, (a, α) 7→ (gα, gahα)

is homomorphic. This can be seen as follows:

C(a, α) · C(a′, α′) = (gα, gahα) · (gα′
, ga

′
hα

′
)

= (gα+α
′
, ga+a

′
hα+α

′
)

= C(a+ a′, α+ α′).

b) Given a pair (g1, g2) = (gα, gahα), one can recover a (inefficiently) as follows:

1. Compute α = logg g1, the discrete logarithm to basis g of g1.

2. Compute x = logg(g2h
−α).

c) For a ∈ Zq, denote by Ca the random variable corresponding to a commitment to a,
i.e., for α chosen uniformly at random.

Recall that part of the commitment scheme is the publicly known but randomly
chosen h ∈ G. Thus, to prove that ElGamal commitments are computationally
hiding, it needs to be shown that, for every a and a′, (h,Ca) is computationally
indistinguishable from (h,Ca′).

1

To that end, for a ∈ Zq, consider first an additional random variable C̃a defined by
choosing α ∈ Zq and k ∈ G uniformly at random and setting C̃a := (gα, gak).

Using the triangle inequality and the fact that C̃a ≡ C̃a′ for all a, a′ ∈ Zq, one obtains
that

∆D((h,Ca), (h,Ca′)) ≤ ∆D((h,Ca), (h, C̃a)) + ∆D((h, C̃a′), (h,Ca′)).

The value ∆D((h,Ca), (h, C̃a)) (and similarly ∆D((h, C̃a′), (h,Ca′))) can be bounded
by a reduction to the DDH problem, i.e., transforming the distinguisher D into a
distinguisher D′a for DDH triples as follows: D′a receives as input a triple (x, y, z)
(which is either of the form (gu, gv, guv) or (gu, gv, gw) for randomly chosen u, v, w ∈
Zq). Then, D′a calls D on (x, (y, gaz)) and outputs whatever bit D outputs.

It is easily verified that if (x, y, z) is of the form (gu, gv, guv), then the input (x, (y, gaz))
to D is distributed identically to (h,Ca), and if (x, y, z) is of the form (gu, gv, gw),
then (x, (y, gaz)) to D is distributed identically to (h, C̃a). Thus,

∆D((h,Ca), (h, C̃a)) = ∆D′
a((gu, gv, guv), (gu, gv, gw)),

and, finally,

∆D((h,Ca), (h,Ca′)) ≤ ∆D′
a((gu, gv, guv), (gu, gv, gw))

+∆D′
a′ ((gu, gv, guv), (gu, gv, gw)),

where D′a′ is defined analogously to D′a. Thus, under the DDH assumption, ElGamal
commitments are computationally hiding.

1To be explicit: the randomness involved here is over the choice of h and α.

10.3 Multi-Party Computation from Homomorphic Commitments

a) Some player P can commit to a value x ∈ X among all players using the following
protocol: The input of the sender P is x and the other players Pi have no inputs. P
chooses a value r ∈R R and broadcasts y = C(x, r). P ’s output of the subprotocol
is r, and the other players output the value y′ received in the broadcast protocol.
The protocol is always considered successful.2

b) Suppose some player P wants to open some commitment y for which he knows (x, r)
such that C(x, r) = y to some other player P ′. The input of P is the opening
information (x, r). P ′’s input is the commitment y. In order to open y, P just sends
(x, r) to P ′, who accepts and outputs x if and only if y = C(x, r).

If P wants to open y to all players, he simply broadcasts (x, r).

Since the first is a subprotocol for output (i.e., the value is not used further in
the computation) between two players, there is no need for the players to agree on
whether it succeeded. For the second subprotocol, broadcast again ensures that all
honest players agree on whether the protocol was successful. Note that, here, just
sending (x, r) is not sufficient.

c) A player P committed by y can transfer this commitment to some other player P ′

using the following protocol: The input of P is the opening information (x, r) and
the input of all other players (including P ′) is the commitment y. Player P sends
(x, r) to P ′, who checks if y = C(x, r). If so, he broadcasts 1 and otherwise 0. If the
broadcasted value is 0, P can broadcast the opening information.

Again, the broadcast properties ensure that, in the end, either all honest players
consider P ′ committed to y or reject the protocol. Some player Pi accepts the protocol
run and considers P ′ committed by y if and only if the broadcast value by P ′ is 1 or
the broadcast value was 0 and P broadcasts a correct opening information.

d) Suppose some player P is committed to a and b by A = C(a, α) and B = C(b, β).
Then, he can commit to the product e = ab using the following protocol: The inputs
of P are a, b, α, β and the inputs of the other players Pi are A,B. First, P computes
E = C(e, ε) for some ε ∈R R and broadcasts E. Then, he executes a distributed (see
below) zero-knowledge proof of knowledge of a pre-image of (A,E) with respect to
the homomorphism

ψ : X ×R×R → B × B, (x, ξ, ρ) 7→ (C(x, ξ), C(xb, xβ + ρ)) .

One can intuitively interpret the proof as showing that e = ab; a bit more precisely,
it shows that P can open A to a value a and E to ab.

In order to build such a zero-knowledge proof, one makes use of the one-way group-
homomorphism protocol seen in the first part of the lecture. To use such a protocol,
one needs that the function is homomorphic (the reader should verify this!), and can
be efficiently evaluated: any party can evaluate the function without knowing b (only
using the publicly known blob B):

ψ(x, ξ, ρ) = (C(x, ξ), Bx · C(0, ρ)) .

The pre-image of (A,E) that P uses in the protocol is (a, α, ε − aβ). A player Pi
accepts the protocol if and only if P succeeds in the zero-knowledge proof.

The proof is a zero-knowledge proof of knowledge if there exists u, l such that:

2Note that players simply assume a default value if P does not broadcast anything, which is the reason why
this protocol is always successful. The important thing is that all honest players have the same value y′, which
is guaranteed by the broadcast channel.

1. ψ(u) = (A,E)l.

2. ∀c1, c2 ∈ C with c1 6= c2 gcd(c1 − c2, l) = 1

and also |C| is poly-bounded and 1/|C|s is negligible, where s is the number of
repetitions of the 3-round OWGH protocol. Such conditions are satisfied for example
with u = 0, l = |B|, C = {0, 1} and s is large enough.

So far the OWGH protocol introduced in the first part of the lecture was a 2-party
protocol. Here, we need that P proves the statement towards all parties, and all
parties have agreement on whether the proof was successful or not. For that, P
broadcasts all of his messages. The challenge is chosen as follows: Each player Pi
chooses a random value ri, and they jointly compute the sum of the random values.

Since P broadcasts E as well as all the messages in the zero-knowledge proof and
since the challenge is chosen in a distributed fashion, the honest players agree on
whether or not the protocol was successful.

