Cryptographic Protocols Solution to Exercise 8

8.1 Trusted Party Operations

a) To generate a random secret value, the trusted party receives a random value r_{i} from each player P_{i} and computes $\sum_{i} r_{i}$.
b) Since the order of the multiplicative group of \mathbb{F} is $p-1, x^{p-1}=1$, which implies that $x^{p-2} \cdot x=1$, we have that $x^{-1}=x^{p-2}$. Then, to compute the inverse x^{-1}, the trusted party can do $p-2$ consecutive multiplications. Note that when $x=0$, then the computed "inverse" equals 0 . Using the square-and-multiply method, it is enough to compute $O(\log (p))$ multiplications.
c) The trusted party can generate a secret random value r. Then, using a single multiplication gate it computes $y:=x \cdot r$ and sends this value to each party P_{i}. Then, each party computes y^{-1} and sends it to the trusted party. Finally, the trusted party computes $r \cdot y^{-1}=r \cdot(x \cdot r)^{-1}=x^{-1}$. Observe that when $r=0$, the inverse is not defined. One can choose the size of the field large enough so that this happens with negligible probability.
When $x=0$, then the players obtain the value $y=0$. In this case, the players learn that the value that is shared is 0 .
d) Let $c \in\{0,1\}$. To execute the "if"-statement, compute

$$
z:=(1-c) \cdot x+c \cdot y .
$$

For an arbitrary $c \in \mathbb{F}$, compute

$$
z:=\left(1-c^{p-1}\right) \cdot x+c^{p-1} \cdot y .
$$

This results in the correct value z since $c^{p-1}=1$ if $c \neq 0$ and $c^{p-1}=0$ if $c=0$.

8.2 Shamir Sharings

a) Suppose there is another polynomial f^{\prime} of degree at most $n-1$ with the property that $f^{\prime}\left(\alpha_{i}\right)=s_{i}$ for all $i=1, \ldots, n$. Then, the polynomial $h:=f-f^{\prime}$ has n roots (namely $\alpha_{1}, \ldots, \alpha_{n}$). Since it has degree at most $n-1, h$ must be the all-zero polynomial. Thus, $f=f^{\prime}$.
b) For $T \subseteq\{1, \ldots, n\}$ and $s \in \mathbb{F}$, denote by $S^{T, s}$ the distribution sampled as follows: Choose random coefficients R_{1}, \ldots, R_{t}, compute $S_{i}:=p\left(\alpha_{i}\right)$ for $p(x):=s+R_{1} x+$ $R_{2} x^{2}+\ldots+R_{t} x^{t}$ and set $S^{T, s}:=\left(S_{i}\right)_{i \in T}$. That is, $S^{T, s}$ denotes the random variable corresponding to the vector of shares of the players P_{i} with $i \in T$ when $s \in \mathbb{F}$ is shared.

A sharing scheme reveals no information about s to up to t players if for every $T \subseteq$ $\{1, \ldots, n\}$ with $|T| \leq t$,

$$
\begin{equation*}
S^{T, s} \equiv S^{T, s^{\prime}} \tag{1}
\end{equation*}
$$

for all $s, s^{\prime} \in \mathbb{F}$.
Consider now a second distribution $\tilde{S}^{T, s}$, which is defined as $S^{T, s}$ except that the sharing polynomial $\tilde{p}(x)$ is obtained by choosing random values $\tilde{s}_{1}, \ldots, \tilde{s}_{t}$ of $\tilde{p}(x)$ and interpolating the unique polynomial $\tilde{p}(x)$ through the points $\left(\alpha_{i}, \tilde{s}_{i}\right)$ and $(0, s)$. It is easily seen that $S^{T, s} \equiv \tilde{S}^{T, s}$ for all T and s, since every choice of coefficients $R_{i}=r_{i}$ uniquely determines a polynomial $p(x)$, which in turn uniquely determines the values at the t positions α_{i} and vice-versa.
Also, $\tilde{S}^{T, s} \equiv \tilde{S}^{T, s^{\prime}}$ because both distributions are simply $|T|$ uniformly random and independent field elements. This implies (1).
c) Denote by $f(X)=a^{\prime} X+a$ and $g(X)=b^{\prime} X+b$ the sharing polynomials of a and b, respectively. In the following we create a system of equations that will allow P_{2} to compute a and b from the values which he sees in the protocol:

$$
\begin{align*}
f(2)=a_{2} & \Longleftrightarrow \quad 2 a^{\prime}+a=a_{2} \tag{2}\\
g(2)=b_{2} & \Longleftrightarrow \quad 2 b^{\prime}+b=b_{2} \tag{3}
\end{align*}
$$

Using the announced shares c_{i}, one can compute the unique polynomial h of degree at most 2 that goes through these points, i.e., $h(1)=c_{1}, h(2)=c_{2}$ and $h(3)=c_{3}$:

$$
\begin{equation*}
h(X)=h_{1}+h_{2} X+h_{3} X^{2} \tag{4}
\end{equation*}
$$

for some coefficients h_{1}, h_{2}, and h_{3}, which can be computed, e.g., using Lagrange's interpolation formula.
Because h corresponds to the polynomial resulting from the multiplication of f and g, it should have the following form:

$$
\begin{align*}
h(X) & =f(X) \cdot g(X) \\
& =\left(a+a^{\prime} X\right) \cdot\left(b+b^{\prime} X\right) \\
& =a b+\left(a b^{\prime}+a^{\prime} b\right) X+a^{\prime} b^{\prime} X^{2} \tag{5}
\end{align*}
$$

Because the coefficients in (4) and (5) should be the same

$$
\begin{aligned}
a b & =h_{1} \\
a b^{\prime}+a^{\prime} b & =h_{2} \\
a^{\prime} b^{\prime} & =h_{3}
\end{aligned}
$$

The above three equations, together with (2) and (3), form a system of 5 equations over GF(5) with 4 unknowns. Solving these equations P_{2} can compute the factors a and b.
d) The adversary can use its shares to interpolate a degree- $(t-1)$ polynomial $g^{\prime} \neq g$, since the degree of the sharing polynomial g is exactly t. Because $g\left(\alpha_{i}\right)=g^{\prime}\left(\alpha_{i}\right)$ for t indices $i \in\{1, \ldots, n\}, g(0) \neq g^{\prime}(0)$ (since otherwise $g^{\prime}=g$). Thus, the adversary can exclude $g^{\prime}(0)$ as the secret, which violates privacy.

