Cryptographic Protocols Solution to Exercise 7

7.1 Protocols and Specifications

a) Protocol 3 does not satisfy Specification 1, since in the protocol P_{2} outputs $x_{1} \wedge x_{2}$ and in the specification P_{2} outputs x_{1}, which is different than $x_{1} \wedge x_{2}$ in the case where $x_{1}=1$ and $x_{2}=0$.
Protocol 3 satisfies Specification 2, since the parties output the same in the protocol and in the specification.
b) P_{2} is semi-honest: Protocol 3 is not secure if P_{2} is passively corrupted. We need to argue that there is an adversary in Protocol 3 that achieves something, such that no adversary in the specification achieves the same.
We can see that in Protocol $3 P_{2}$ learns the message x_{1}, which cannot always be computed from the input and output of P_{2}. Consider the case where party P_{1} chooses x_{1} uniformly at random. Furthermore, consider the case where $x_{2}=0$. Then, $x_{1} \wedge x_{2}=$ 0 , and the adversary in the specification has to guess x_{1}, in which it succeeds with probability at most $\frac{1}{2}$.
P_{2} is malicious: The protocol is secure in the case where P_{2} is actively corrupted. We argue that anything an adversary can do in Protocol 3, there is another adversary in the specification that achieves the same.
In the protocol execution, the adversary obtains the input x_{1} of P_{1}, and then can output an arbitrary value from x_{1} and x_{2}.
In the specification, P_{1} sends x_{1} to the trusted party. Here, the adversary corrupting P_{2} sends 1 to the trusted party. Then, it receives $x_{1} \wedge 1=x_{1}$, and outputs the same as what the adversary in Protocol 3 outputs.
c) Two passive corruptions: If P_{1} and P_{2} are passively corrupted, the adversary in the specification knows x_{1}, x_{2} and $x_{1} \wedge x_{2} \wedge x_{3}$. Hence, it can generate all messages that an adversary in Protocol 5 see (which consists of the messages $x_{1}, x_{1} \wedge x_{2}$ and $x_{1} \wedge x_{2} \wedge x_{3}$). However, when P_{1} and P_{3} are passively corrupted, the adversary in the specification (who knows x_{1}, x_{3} and $x_{1} \wedge x_{2} \wedge x_{3}$) cannot compute $x_{1} \wedge x_{2}$.
If the adversary in Protocol 5 corrupts all players, the adversary in the specification can generate all messages of the protocol, and hence the protocol is secure.
Two active corruptions: If P_{1} and P_{2} are actively corrupted, the adversary in the specification knows x_{1}, x_{2} and $x_{1} \wedge x_{2} \wedge x_{3}$. Hence, it can generate any message that an adversary sees in Protocol 5 .
In the case where P_{1} and P_{3} are corrupted, the adversary in the specification can input 1 to the trusted party on behalf of P_{1} and P_{3}, to learn the input of P_{2}. Hence, it can generate all messages that can be seen by any adversary of Protocol 5 without changing the output (P_{2} has no output).

7.2 Types of Oblivious Transfer

a) The reduction is straight-forward: the sender sends $\left(b_{0}, b_{1}, 0, \ldots, 0\right)$ via 1-out-of- k OT, and the receiver picks $c \in\{0,1\}$.
b) Alice and Bob use the following protocol:
Alice

Bob

$$
\begin{array}{cc}
r_{1} \in_{R}\{0,1\}, e_{1}:=b_{1} & \xrightarrow{\left[e_{1} \mid r_{1}\right]_{1-2-\mathrm{OT}}} \quad \text { if } c=1, \text { pick } e_{1} \text {, else } r_{1} \\
r_{2} \in_{R}\{0,1\}, e_{2}:=b_{2} \oplus r_{1} & \xrightarrow{\left[e_{2} \mid r_{2}\right]_{1-2-\mathrm{OT}}} \text { if } c=2, \text { pick } e_{2} \text {, else } r_{2} \\
r_{3} \in_{R}\{0,1\}, e_{3}:=b_{3} \oplus r_{1} \oplus r_{2} & \xrightarrow[{\left.e_{3} \mid r_{3}\right]_{1-2-\mathrm{OT}}}]{ } \text { if } c=3 \text {, pick } e_{3} \text {, else } r_{3} \\
\vdots & \vdots \\
e_{k}:=b_{k} \oplus r_{1} \oplus \ldots \oplus r_{k-1} & \longrightarrow:=e_{c} \oplus r_{1} \oplus \ldots \oplus r_{c-1}
\end{array}
$$

Alice trivially does not learn any information about Bob's choice $c \in\{1, \ldots, k\}$. If Bob wishes to learn bit b_{c}, he needs to know all preceding one-time pads r_{1}, \ldots, r_{c-1} as well as the value e_{c}. Hence, he cannot choose any of the values e_{1}, \ldots, e_{c-1}, and he has to choose the bit e_{c}. However, in that case he does not learn r_{c} and learns no information about b_{i} for $i>c$. Hence, even when Bob does not follow the protocol, he learns at most one of the k bits.
c) Alice and Bob use the following protocol:

\[

\]

Alice trivially does not learn any information about whether Bob receives the bit or not. Moreover, it is obvious that Bob receives the bit with probability $\frac{1}{2}$ and otherwise has no information about it.
d) Let κ be a security parameter. Alice and Bob use the following protocol:

$$
\left. \begin{array}{ll}
& \forall i: \text { receive } r_{i}^{\prime} \in\left\{r_{i}, \perp\right\}
\end{array}\right\} \begin{aligned}
& T_{c}:=\left\{i \mid r_{i}^{\prime} \neq \perp\right\} \\
& t_{0}:=\bigoplus_{i \in T_{0}} r_{i}, t_{1}:=\bigoplus_{i \in T_{1}} r_{i} \\
& e_{0}:=b_{0} \oplus t_{0}, e_{1}:=b_{1} \oplus t_{1}
\end{aligned}
$$

Alice does not learn any information about Bob's choice $c \in\{1, \ldots, k\}$ since T_{0} and T_{1} do not reveal which instances of the underlying Rabin OT were successful. Furthermore, with probability $1-2^{-\kappa}$ there is at least one bit r_{i} the receiver does not learn, and, therefore, at least one of the one-time pads t_{0} and t_{1} is uniformly random. Therefore, except with probability $2^{-\kappa}$, the receiver learns at most one of the bits b_{0} and b_{1}.

7.3 Multi-Party Computation with Oblivious Transfer

a) A possible generalization of the given protocol to the three-party case could be as follows: A computes the function table of $f(x, \cdot, \cdot)$ and sends it by OT to B, i.e., A and B invoke 1-out-of- m OST, where A inputs the following vectors t_{i} :

$$
\begin{aligned}
t_{1}: & :=\left(f\left(x, y_{1}, z_{1}\right), f\left(x, y_{1}, z_{2}\right), \ldots, f\left(x, y_{1}, z_{m}\right)\right) \\
t_{2} & :=\left(f\left(x, y_{2}, z_{1}\right), f\left(x, y_{2}, z_{2}\right), \ldots, f\left(x, y_{2}, z_{m}\right)\right) \\
& \vdots \\
t_{|\mathcal{Y}|} & :=\left(f\left(x, y_{m}, z_{1}\right), f\left(x, y_{m}, z_{2}\right), \ldots, f\left(x, y_{m}, z_{m}\right)\right) .
\end{aligned}
$$

B receives t_{y}, i.e., the function table of $f(x, y, \cdot)$ for an arbitrary y. Subsequently, B sends C the received function table via 1-out-of- m OST, where B inputs m values $f\left(x, y, z_{1}\right), f\left(x, y, z_{2}\right), \ldots, f\left(x, y, z_{m}\right)$, and C receives $f(x, y, z)$ for his input z. Finally, C sends $f(x, y, z)$ to A and B.
b) The above protocol is secure if either A or C are passively corrupted, but not against an adversary who corrupts B. This can be seen by the following example: Consider the function $f:\{0,1\}^{3} \mapsto\{0,1\}$ with

$$
f(x, y, z)= \begin{cases}1 & \text { if } x=y=z \\ 0 & \text { otherwise }\end{cases}
$$

In the protocol from a), B learns after the computation of f whether or not $x=y$. However, B should learn this information only when the function evaluates to 1 . Hence, the protocol does not achieve the property that the players receive no more information in the execution of the protocol than what they can compute from the output of f.
c) The idea is that A encrypts the function table $f(x, y, \cdot)$ for each possible y using one-time pad encryption and sends the keys to C (but not to B).
More concretely, the improved protocol works as follows: For each $z \in \mathbb{Z}_{m}, A$ chooses a value $r_{z} \in \mathbb{Z}_{m}$ uniformly at random (the one-time pad key) and sends it to C. Subsequently, A sends B the following vector (where x is A 's input) by 1-out-of- m OST:

$$
\begin{aligned}
& t_{1}:=\left(f\left(x, y_{1}, z_{1}\right) \oplus r_{1}, f\left(x, y_{1}, z_{2}\right) \oplus r_{2}, \ldots, f\left(x, y_{1}, z_{m}\right) \oplus r_{m}\right) \\
& t_{2}::\left(f\left(x, y_{2}, z_{1}\right) \oplus r_{1}, f\left(x, y_{2}, z_{2}\right) \oplus r_{2}, \ldots, f\left(x, y_{2}, z_{m}\right) \oplus r_{m}\right) \\
& \vdots \\
& t_{m}:=\left(f\left(x, y_{m}, z_{1}\right) \oplus r_{1}, f\left(x, y_{m}, z_{2}\right) \oplus r_{2}, \ldots, f\left(x, y_{m}, z_{m}\right) \oplus r_{m}\right) .
\end{aligned}
$$

That way, B can choose the row corresponding to his input y. Subsequently, B sends C the values $f(x, y, z) \oplus r_{z}$ (for all $z \in \mathcal{Z}$) via 1-out-of-m OST, and C chooses the value $f(x, y, z) \oplus r_{z}$ corresponding to his input z and computes $f(x, y, z)$ using the key r_{z} which he received from A in the first step. Finally, C sends $f(x, y, z)$ to A and B. It is easily verified that the protocol is secure against a passive adversary B, as the function table of $f(x, y, \cdot)$ that B receives from A in the second step is completely blinded by the one-time pad encryption.

