
ETH Zurich, Department of Computer Science
SS 2021

Prof. Ueli Maurer
Dr. Martin Hirt

Konstantin Gegier
Chen-Da Liu Zhang

Cryptographic Protocols

Solution to Exercise 7

7.1 Protocols and Specifications

a) Protocol 3 does not satisfy Specification 1, since in the protocol P2 outputs x1 ∧ x2
and in the specification P2 outputs x1, which is different than x1∧x2 in the case where
x1 = 1 and x2 = 0.

Protocol 3 satisfies Specification 2, since the parties output the same in the protocol
and in the specification.

b) P2 is semi-honest: Protocol 3 is not secure if P2 is passively corrupted. We need to
argue that there is an adversary in Protocol 3 that achieves something, such that no
adversary in the specification achieves the same.

We can see that in Protocol 3 P2 learns the message x1, which cannot always be
computed from the input and output of P2. Consider the case where party P1 chooses
x1 uniformly at random. Furthermore, consider the case where x2 = 0. Then, x1∧x2 =
0, and the adversary in the specification has to guess x1, in which it succeeds with
probability at most 1

2 .

P2 is malicious: The protocol is secure in the case where P2 is actively corrupted. We
argue that anything an adversary can do in Protocol 3, there is another adversary in
the specification that achieves the same.

In the protocol execution, the adversary obtains the input x1 of P1, and then can
output an arbitrary value from x1 and x2.

In the specification, P1 sends x1 to the trusted party. Here, the adversary corrupting
P2 sends 1 to the trusted party. Then, it receives x1 ∧ 1 = x1, and outputs the same
as what the adversary in Protocol 3 outputs.

c) Two passive corruptions: If P1 and P2 are passively corrupted, the adversary in the
specification knows x1, x2 and x1∧x2∧x3. Hence, it can generate all messages that an
adversary in Protocol 5 see (which consists of the messages x1, x1∧x2 and x1∧x2∧x3).
However, when P1 and P3 are passively corrupted, the adversary in the specification
(who knows x1, x3 and x1 ∧ x2 ∧ x3) cannot compute x1 ∧ x2.
If the adversary in Protocol 5 corrupts all players, the adversary in the specification
can generate all messages of the protocol, and hence the protocol is secure.

Two active corruptions: If P1 and P2 are actively corrupted, the adversary in the
specification knows x1, x2 and x1 ∧ x2 ∧ x3. Hence, it can generate any message that
an adversary sees in Protocol 5.

In the case where P1 and P3 are corrupted, the adversary in the specification can
input 1 to the trusted party on behalf of P1 and P3, to learn the input of P2. Hence,
it can generate all messages that can be seen by any adversary of Protocol 5 without
changing the output (P2 has no output).

7.2 Types of Oblivious Transfer

a) The reduction is straight-forward: the sender sends (b0, b1, 0, . . . , 0) via 1-out-of-k OT,
and the receiver picks c ∈ {0, 1}.

b) Alice and Bob use the following protocol:

Alice Bob

r1 ∈R {0, 1}, e1 := b1 -[e1 | r1]1-2-OT if c = 1, pick e1, else r1

r2 ∈R {0, 1}, e2 := b2 ⊕ r1 -[e2 | r2]1-2-OT if c = 2, pick e2, else r2

r3 ∈R {0, 1}, e3 := b3 ⊕ r1 ⊕ r2 -[e3 | r3]1-2-OT if c = 3, pick e3, else r3

...
...

...

ek := bk ⊕ r1 ⊕ . . .⊕ rk−1 -ek b := ec ⊕ r1 ⊕ . . .⊕ rc−1

Alice trivially does not learn any information about Bob’s choice c ∈ {1, . . . , k}. If
Bob wishes to learn bit bc, he needs to know all preceding one-time pads r1, . . . , rc−1
as well as the value ec. Hence, he cannot choose any of the values e1, . . . , ec−1, and
he has to choose the bit ec. However, in that case he does not learn rc and learns no
information about bi for i > c. Hence, even when Bob does not follow the protocol,
he learns at most one of the k bits.

c) Alice and Bob use the following protocol:

Alice Bob

i ∈R {0, 1} j ∈R {0, 1}

bi := b, b1−i := 0 -[b0 | b1]1-2-OT pick bj

-i
if i = j, set b := bj ,
else b := ⊥

Alice trivially does not learn any information about whether Bob receives the bit or
not. Moreover, it is obvious that Bob receives the bit with probability 1

2 and otherwise
has no information about it.

d) Let κ be a security parameter. Alice and Bob use the following protocol:

Alice Bob

r1, . . . , rκ ∈R {0, 1} -∀i : [ri]Rabin-OT ∀i : receive r′i ∈ {ri,⊥}

t0 :=
⊕

i∈T0 ri, t1 :=
⊕

i∈T1 ri
� T0, T1

Tc := {i | r′i 6= ⊥}
T1−c := {i | r′i = ⊥}

e0 := b0 ⊕ t0, e1 := b1 ⊕ t1 -e0, e1 tc :=
⊕

i∈Tc ri
bc := ec ⊕ tc

Alice does not learn any information about Bob’s choice c ∈ {1, . . . , k} since T0 and
T1 do not reveal which instances of the underlying Rabin OT were successful. Fur-
thermore, with probability 1 − 2−κ there is at least one bit ri the receiver does not
learn, and, therefore, at least one of the one-time pads t0 and t1 is uniformly random.
Therefore, except with probability 2−κ, the receiver learns at most one of the bits b0
and b1.

7.3 Multi-Party Computation with Oblivious Transfer

a) A possible generalization of the given protocol to the three-party case could be as
follows: A computes the function table of f(x, ·, ·) and sends it by OT to B, i.e., A
and B invoke 1-out-of-m OST, where A inputs the following vectors ti:

t1 := (f(x, y1, z1), f(x, y1, z2), . . . , f(x, y1, zm))

t2 := (f(x, y2, z1), f(x, y2, z2), . . . , f(x, y2, zm))

...

t|Y| := (f(x, ym, z1), f(x, ym, z2), . . . , f(x, ym, zm)).

B receives ty, i.e., the function table of f(x, y, ·) for an arbitrary y. Subsequently,
B sends C the received function table via 1-out-of-m OST, where B inputs m values
f(x, y, z1), f(x, y, z2), . . . , f(x, y, zm), and C receives f(x, y, z) for his input z. Finally,
C sends f(x, y, z) to A and B.

b) The above protocol is secure if either A or C are passively corrupted, but not against
an adversary who corrupts B. This can be seen by the following example: Consider
the function f : {0, 1}3 7→ {0, 1} with

f(x, y, z) =

{
1 if x = y = z

0 otherwise.

In the protocol from a), B learns after the computation of f whether or not x = y.
However, B should learn this information only when the function evaluates to 1. Hence,
the protocol does not achieve the property that the players receive no more information
in the execution of the protocol than what they can compute from the output of f .

c) The idea is that A encrypts the function table f(x, y, ·) for each possible y using
one-time pad encryption and sends the keys to C (but not to B).

More concretely, the improved protocol works as follows: For each z ∈ Zm, A chooses
a value rz ∈ Zm uniformly at random (the one-time pad key) and sends it to C.
Subsequently, A sends B the following vector (where x is A’s input) by 1-out-of-m
OST:

t1 := (f(x, y1, z1)⊕ r1, f(x, y1, z2)⊕ r2, . . . , f(x, y1, zm)⊕ rm)

t2 := (f(x, y2, z1)⊕ r1, f(x, y2, z2)⊕ r2, . . . , f(x, y2, zm)⊕ rm)

...

tm := (f(x, ym, z1)⊕ r1, f(x, ym, z2)⊕ r2, . . . , f(x, ym, zm)⊕ rm).

That way, B can choose the row corresponding to his input y. Subsequently, B sends
C the values f(x, y, z) ⊕ rz (for all z ∈ Z) via 1-out-of-m OST, and C chooses the
value f(x, y, z)⊕rz corresponding to his input z and computes f(x, y, z) using the key
rz which he received from A in the first step. Finally, C sends f(x, y, z) to A and B.

It is easily verified that the protocol is secure against a passive adversary B, as the
function table of f(x, y, ·) that B receives from A in the second step is completely
blinded by the one-time pad encryption.

