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Solution to Exercise 5

5.1 Perfectly Binding/Hiding Commitments

We consider perfectly correct commitment schemes with a non-interactive Commit phase.
Such a commitment scheme can be characterized by a function C : X ×R → B that maps
a value x ∈ X and a randomness string r from some randomness space R to a blob
b = C(x, r) in some blob space B. The Open phase simply consists of the prover’s
sending (x, r) to the verifier, who checks that C(x, r) = b.

In the following, denote by Bx := imC(x, ·) for x ∈ X .

a) Let x 6= x′. Perfectly binding means that Bx∩Bx′ = ∅, whereas perfectly hiding means
that C(x,R) and C(x′, R) are identically distributed random variables for R ∈R R.
This requires in particular that Bx = Bx′ , which contradicts Bx ∩ Bx′ = ∅.

b) Subtasks b) and c) are discussed simultaneously in c).

c) Note that in all cases, the combined scheme is a string commitment C(x, (r1, r2)).

1. Hiding: The computational hiding property of CB cannot be broken by addition-
ally adding the blob of the perfectly hiding scheme CH .1

Binding: As CB is perfectly binding, this is also true for the combined scheme
(CH(x, r1), CB(x, r2)), since C(x, (r1, r2)) = C(x′, (r′1, r

′
2)) implies that CB(x, r2) =

CB(x′, r′2).

2. Hiding: Clearly, the scheme is perfectly hiding as CH(CB(x, r1), r2) perfectly
hides CB(x, r1) and thereby x.
Binding: Assume for contradiction one could efficiently come up with x 6= x′,
(r1, r2), and (r′1, r

′
2) such that C(x, (r1, r2)) = C(x′, (r′1, r

′
2)). Then, by the fact

that CB is perfectly binding, y := CB(x, r1) 6= CB(x′, r′1) =: y′, one can efficiently
come up with y 6= y′, r2, and r′2 such that CH(y, r2) = CH(y′, r′2), which breaks
the (computational) binding property of CH .

3. Hiding: Clearly, the scheme is perfectly hiding as CH(x, r1) perfectly hides x.
Binding: Assume for contradiction one could efficiently come up with x 6= x′,
(r1, r2), and (r′1, r

′
2) such that C(x, (r1, r2)) = C(x′, (r′1, r

′
2)). Then, by the fact

that CB is perfectly binding, y := CH(x, r1) = CH(x′, r′1) =: y′, one can efficiently
come up with x 6= x′, r1, and r′1 such that CH(x, r1) = y = CH(x′, r′1), which
breaks the (computational) binding property of CH .

1Formally, this would have to be proved via a reduction.



5.2 Homomorphic Commitments

Note that a blob committing to 0 is a quadratic residue, and, since t is a quadratic
non-residue with

(
t
m

)
= +1, a blob committing to 1 is a quadratic non-residue b with(

b
m

)
= +1. Thus, the scheme is of type B, where the computational hiding property

relies on the QR assumption, which states that modulo an RSA prime m it is hard to
distinguish quadratic residues from quadratic non-residues with

(
b
m

)
= +1.

a) Denote by b0 = r20t
x0 and b1 = r21t

x1 two blobs committing to bits x0 and x1, respec-
tively. By multiplying b0 and b1, one obtains

b = b0 · b1 = r20 · r21 · tx0+x1 .

This is a commitment to x0 ⊕ x1: If x0 = x1 (i.e., x0 ⊕ x1 = 0), then b is a quadratic
residue (with square root r = r0r1 if x0 = x1 = 0 and r = r0r1t if x0 = x1 = 1). If
x0 6= x1 (i.e., x0 ⊕ x1 = 1), then b is a quadratic non-residue with

(
b
m

)
= +1 and can

be opened using r = r0r1.

b) Let b = r2tx be the blob committing to x. By multiplying b by t one obtains

b′ = b · t = r2 · tx+1.

If x = 0, b′ is a quadratic non-residue and thus a commitment to 1. In this case, b′

can be opened using randomness r′ = r.

If x = 1, b′ is a quadratic residue and thus a commitment to 0. In this case, b′ can be
opened using randomness r′ = rt.

c) As shown in a), if x0 = x1, b0 · b1 is a quadratic residue, a fact that Peggy can prove
using the Fiat-Shamir protocol. Moreover, if x0 6= x1, then b := b0 · b1 is a quadratic
non-residue with

(
b
m

)
= +1 and thus b0 · b1 · t is a quadratic residue, which, again, can

be proved using the Fiat-Shamir protocol.

5.3 Graph Coloring

The protocol is a proof of statement, it shows that G has a 3-coloring. Let V = {1, . . . , n},
and the 3-coloring be defined as a function f : V → {1, 2, 3}.

Peggy Vic

knows a 3-coloring f for
G := (V,E)

knows G

choose a random permutation of
the colors π
let f ′ = π ◦ f
∀i ∈ V , commit to f ′(i) as Ci -C1, . . . , Cn

� (i, j)
let (i, j) ∈R E

open colors of vertices i and j -di, dj check if f ′(i), f ′(j) ∈ {1, 2, 3}
and f ′(i) 6= f ′(j)

Completeness: It is easily verified that if G has a 3-coloring, then Vic always accepts.
Peggy can answer all the Vic’s queries correctly such that Vic is convinced as long as the
commitment scheme is binding.



Soundness: The scheme has soundness 1
|E| : if G does not have a 3-coloring, a cheating

prover must commit to a coloring that has at least one edge whose vertices have the
same color, or to colors that are not in {1, 2, 3}. Hence, with probability 1

|E| , the ver-

ifier catches him, assuming the commitments are perfectly binding. When doing n|E|
sequential repetitions of the protocol, the soundness error is down to (1− 1

|E|)
n|E| ≤ e−n.

Zero-Knowledge: The protocol is c-simulatable: Given (i, j), choose random colors
σi, σj , and compute the commitments Ci, Cj . Since |E| is polynomially large the protocol
is zero-knowledge., assuming that the commitments are perfectly hiding.


