Cryptographic Protocols Solution to Exercise 4

4.1 "OR"-Proof

a) Intuitively, the idea is that Vic sends Peggy a challenge c, and she has to give answers to two challenges that add up to c. This way, Peggy can use the simulator for GI to prepare for the isomorphism that she does not know. Let S be the simulator for the GI protocol.

Peggy

knows $(b, \sigma): \mathcal{T}=\sigma \mathcal{G}_{b} \sigma^{-1}$, $b \in\{0,1\}$
$\left(\mathcal{T}_{1-b}, c_{1-b}, \rho_{1-b}\right) \leftarrow$ $S\left(\mathcal{T}, \mathcal{G}_{1-b}\right)$
choose random permutation
π
$\mathcal{T}_{b}:=\pi \mathcal{T} \pi^{-1}$ \qquad
\qquad choose $c \in_{R}\{0,1\}$
$c_{b} \equiv_{2} c-c_{1-b}$
compute $\rho_{b}:=\pi \sigma^{-c_{b}} \quad \stackrel{c_{0}, c_{1}, \rho_{0}, \rho_{1}}{\longrightarrow}$ check $c_{0}+c_{1} \stackrel{?}{\equiv}{ }_{2} c$
for $i \in\{0,1\}$,
if $c_{i}=0$, check $\mathcal{T}_{i}=\rho_{i} \mathcal{T} \rho_{i}^{-1}$
if $c_{i}=1$, check $\mathcal{T}_{i}=\rho_{i} \mathcal{G}_{i} \rho_{i}^{-1}$

The proof that this protocol is complete, a proof of knowledge and zero-knowledge is given in the next subtask for the general case.
b) The desired predicate is $Q^{\prime}\left(\left(x_{0}, x_{1}\right),(b, w)\right):=Q\left(x_{b}, w\right)$, where $b \in\{0,1\}$ indicates for which instance w is a witness.
In the following, let S be the HVZK simulator for (P, V) and let \mathcal{C} be an additive group.

Peggy

knows (b, w)
$\left(t_{1-b}, c_{1-b}, r_{1-b}\right) \leftarrow S\left(x_{1-b}\right)$ choose t_{b} according to P

$$
c_{b}:=c-c_{1-b}
$$

compute r_{b} according to $P \quad c_{0}, c_{1}, r_{0}, r_{1}$ check $c_{0}+c_{1} \stackrel{?}{=} c$
for $i=0,1$, check whether $\left(t_{i}, c_{i}, r_{i}\right)$ is valid according to V

Completeness: The protocol is easily seen to be complete.
Proof of Knowledge: The protocol is 2 -extractable: Fix a first message (t_{0}, t_{1}) and let $\left(c_{0}, c_{1}, r_{0}, r_{1}\right)$ and $\left(c_{0}^{\prime}, c_{1}^{\prime}, r_{0}^{\prime}, r_{1}^{\prime}\right)$ be accepting answers for two challenges $c \neq c^{\prime}$. Since $c \neq c^{\prime}, c_{i} \neq c_{i}^{\prime}$ for at least one $i \in\{0,1\}$. Since $\left(t_{i}, c_{i}, r_{i}\right)$ and $\left(t_{i}, c_{i}^{\prime}, r_{i}^{\prime}\right)$ are two accepting transcripts for the same first message, the 2-extractability of (P, V) allows to compute w such that $Q\left(x_{i}, w\right)=1$. The witness for Q^{\prime} is thus (i, w).
Honest-Verifier Zero-Knowledge: The simulator for the protocol is as following: Run the honest-verifier simulator S on both instances x_{0} and x_{1} : $\left(t_{0}, c_{0}, r_{0}\right) \leftarrow S\left(x_{0}\right)$ and $\left(t_{1}, c_{1}, r_{1}\right) \leftarrow S\left(x_{1}\right)$. The simulated transcript is $\left(\left(t_{0}, t_{1}\right), c_{0}+c_{1},\left(c_{0}, c_{1}, r_{0}, r_{1}\right)\right)$. Observe that since the challenges c_{0} and c_{1} are uniformly distributed, so is the challenge $c=c_{0}+c_{1}$. Also, if we additionally have that \mathcal{C} is polynomially bounded, we have that the protocol is zero-knowledge.

4.2 Zero-Knowledge Proofs of Knowledge of a Preimage of a Group Homomorphism

The protocols are instantiations of the proof of knowledge of a pre-image of a one-way group homomorphism. That is, for each scenario, one needs to provide a suitable homomorphism ϕ between two groups, u and ℓ (for each z), as well as a challenge space \mathcal{C} such that the preconditions of the theorem are satisfied.
a) Let $\phi: \mathbb{Z}_{m}^{*} \times \mathbb{Z}_{m}^{*} \rightarrow \mathbb{Z}_{m}^{*},(x, y) \mapsto x^{e_{1}} y^{e_{2}}$. Then, ϕ is a homomorphism since

$$
\begin{aligned}
\phi\left((x, y) \cdot\left(x^{\prime}, y^{\prime}\right)\right) & =\phi\left(\left(x x^{\prime}, y y^{\prime}\right)\right)=\left(x x^{\prime}\right)^{e_{1}}\left(y y^{\prime}\right)^{e_{2}}=x^{e_{1}} y^{e_{2}} x^{\prime e_{1}} y^{e_{2}} \\
& =\phi(x, y) \cdot \phi\left(x^{\prime}, y^{\prime}\right) .
\end{aligned}
$$

Let $\mathcal{C} \subseteq\left\{0, \ldots, e_{1}+e_{2}-1\right\}$ be polynomially bounded. For $z \in \mathbb{Z}_{m}^{*}$, let $u:=(z, z)$ and $\ell:=e_{1}+e_{2}$. Then,

1. ℓ is prime, and thus $\operatorname{gcd}\left(c_{1}-c_{2}, \ell\right)=1$ for all $c_{1}, c_{2} \in \mathcal{C}$, and
2. $\phi(u)=\phi(z, z)=z^{e_{1}} z^{e_{2}}=z^{e_{1}+e_{2}}=z^{\ell}$.
b) Let $\phi: \mathbb{Z}_{q}^{4} \rightarrow H^{2},\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(z_{1}, z_{2}\right)=\left(h_{1}^{x_{3}} h_{2}^{x_{1}}, h_{1}^{x_{2}} h_{2}^{x_{4}} h_{3}^{x_{1}}\right)$. Clearly, ϕ is a homomorphism since

$$
\begin{aligned}
& \phi\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right)+\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}\right)\right) \\
& =\left(h_{1}^{x_{3}+x_{3}^{\prime}} h_{2}^{x_{1}+x_{1}^{\prime}}, h_{1}^{x_{2}+x_{2}^{\prime}} h_{2}^{x_{4}+x_{4}^{\prime}} h_{3}^{x_{1}+x_{1}^{\prime}}\right) \\
& =\left(h_{1}^{x_{3}} h_{2}^{x_{1}} \cdot h_{1}^{x_{3}^{\prime}} x_{2}^{x_{1}^{\prime}}, h_{1}^{x_{2}} h_{2}^{x_{4}} h_{3}^{x_{1}} \cdot h_{1}^{x_{2}^{\prime}} h_{2}^{x_{4}^{\prime}} h_{3}^{x_{1}^{\prime}}\right) \\
& =\left(h_{1}^{x_{3}} h_{2}^{x_{1}}, h_{1}^{x_{2}} h_{2}^{x_{4}} x_{3}^{x_{1}}\right) \cdot\left(h_{1}^{x_{3}} h_{2}^{x_{1}^{1}}, h_{2}^{x_{2}} h_{2}^{x_{4}^{\prime}} x_{3}^{x_{1}^{\prime}}\right) \\
& =\phi\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \cdot \phi\left(\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}\right)\right) .
\end{aligned}
$$

Let $\mathcal{C} \subseteq \mathbb{Z}_{q}$. For $z \in H^{2}$, let $u:=(0,0,0,0)$ and $\ell:=q$. Then,

1. ℓ is prime, and thus $\operatorname{gcd}\left(c_{1}-c_{2}, \ell\right)=1$ for all $c_{1}, c_{2} \in \mathcal{C}$, and
2. $\phi(u)=\phi(0,0,0,0)=(1,1)=z^{q}=z^{\ell}$.
c) Completeness: The protocol is easily seen to be complete.

Proof of Knowledge: The protocol is 2-extractable: Fix a first message $\left(t_{1}, t_{2}\right)$ and let $\left(r_{1}, r_{2}\right)$ and $\left(r_{1}^{\prime}, r_{2}^{\prime}\right)$ be accepting answers for two challenges $c \neq c^{\prime}$. Since both answers are accepting, this means that $h_{1}^{r_{1}}=t_{1} \cdot z_{1}^{c}, h_{2}^{r_{2}}=t_{2} \cdot z_{2}^{c}, h_{1}^{r_{1}^{\prime}}=t_{1} \cdot z_{1}^{c^{\prime}}$, $h_{2}^{r_{2}^{\prime}}=t_{2} \cdot z_{2}^{c^{\prime}}, a_{1} r_{1}+a_{2} r_{2}=c b$ and $a_{1} r_{1}^{\prime}+a_{2} r_{2}^{\prime}=c^{\prime} b$. From here, one can obtain that $h_{1}^{r_{1}-r_{1}^{\prime}}=z_{1}^{c-c^{\prime}}=h_{1}^{x_{1}\left(c-c^{\prime}\right)}$ and $h_{2}^{r_{2}-r_{2}^{\prime}}=z_{2}^{c-c^{\prime}}=h_{2}^{x_{2}\left(c-c^{\prime}\right)}$. Hence, $x_{1}=\frac{r_{1}-r_{1}^{\prime}}{c-c^{\prime}}$ and $x_{2}=\frac{r_{2}-r_{2}^{\prime}}{c-c^{\prime}}$. Also, $a_{1} x_{1}+a_{2} x_{2}=a_{1} \frac{r_{1}-r_{1}^{\prime}}{c-c^{\prime}}+a_{2} \frac{r_{2}-r_{2}^{\prime}}{c-c^{\prime}}=\frac{1}{c-c^{\prime}}\left(a_{1} r_{1}+a_{2} r_{2}-a_{1} r_{1}^{\prime}-a_{2} r_{2}^{\prime}\right)=$ $\frac{1}{c-c^{\prime}}\left(c b-c^{\prime} b\right)=b$.
Zero-Knowledge: We restrict the challenge space to be polynomially bounded. Then, as seen in the lecture, it is enough to show that the protocol is c-simulatable. Given a challenge $c \in C$, we can sample a random pair (r_{1}, r_{2}) from $S:=\left\{\left(s_{1}, s_{2}\right) \in\right.$ $\left.\mathbb{Z}_{q}^{2}: a_{1} s_{1}+a_{2} s_{2}=c b\right\}$. Then, we assign $t_{1}=h_{1}^{r_{1}} z_{1}^{-c}$ and $t_{2}=h_{2}^{r_{2}} z_{2}^{-c}$. Observe that the distribution is as in the protocol execution. In the protocol execution $\left(r_{1}, r_{2}\right)=$ $\left(v_{1}, v_{2}\right)+c\left(x_{1}, x_{2}\right)$, where $\left(v_{1}, v_{2}\right)$ is a random pair that satisfies $a_{1} v_{1}+a_{2} v_{2}=0$, and $\left(x_{1}, x_{2}\right)$ is a pair that satisfies $a_{1} x_{1}+a_{2} x_{2}=b$. Then, the pair $\left(r_{1}, r_{2}\right)$ is a random pair that satisfies $a_{1} r_{1}+a_{2} r_{2}=c b$.
The problem can actually be solved as using the zero-knowledge proof of knowledge for a preimage of a homomorphism.
Let h be a generator from H (e.g. $h=h_{1}$), and let us define $h_{3}:=h^{a_{1}}, h_{4}:=h^{a_{2}}$. Moreover, we define the homomorphism $\phi: \mathbb{Z}_{q}^{2} \rightarrow H^{3},\left(x_{1}, x_{2}\right) \mapsto\left(h_{1}^{x_{1}}, h_{2}^{x_{2}}, h_{3}^{x_{1}} h_{4}^{x_{2}}\right)$. The goal is to prove knowledge of a preimage of the triple $\left(z_{1}, z_{2}, h^{b}\right)$. It is easy to see that with $u:=(0,0)$ and $l:=q$, we have the conditions: $\operatorname{gcd}\left(c_{1}-c_{2}, \ell\right)=1$ for all $c_{1}, c_{2} \in \mathcal{C}$, and $\phi(u)=\phi(0,0)=(1,1,1)=z^{q}=z^{\ell}$.

