
ETH Zurich, Department of Computer Science
SS 2021

Prof. Ueli Maurer
Dr. Martin Hirt

Konstantin Gegier
Chen-Da Liu Zhang

Cryptographic Protocols

Solution to Exercise 2

2.1 Definition of Interactive Proofs

a) As an extreme example, the “halting problem” is known to be undecidable and there-
fore not in IP. There are also decidable problems that are not in IP. For example,
some problems related to the game of Go are EXPSPACE-complete.

b) Consider an interactive proof (P, V) for a language L, where P and V are probabilistic.
We want to construct a deterministic P̂ so that (P̂ , V) is an interactive proof that
accepts the same language.

In the random experiment between the probabilistic P and the probabilistic V , denote
by pacc,x the probability that V accepts x. Moreover, let pacc,xr be the probability that
V accepts if P ’s randomness is fixed to r and pr that r is chosen as P ’s randomness.

On input x, P̂ does as follows: It runs the protocol (P, V) with all possible random
inputs for both Peggy and Vic and computes for each fixed randomness r of Peggy,
the set of fixed randomness s of Vic that are accepted in the protocol (P, V).1 Then,
P̂ chooses to run P with the randomness r′ that maximizes pacc,xr′ . Note that pacc,xr′ is

the probability that V accepts in an interaction with P̂ . Observe that

p ≤ pacc,x =
∑
r

pacc,xr pr ≤
∑
r

pacc,xr′ pr = pacc,xr′

∑
r

pr = pacc,xr′ .

Thus, if x ∈ L, the probability that P̂ convinces V is at least p. Conversely, since V
is such that it accepts a proof for a word x /∈ L with probability at most q no matter
which prover it interacts with, (P̂ , V) is trivially sound.

Given the considerations in b), the prover’s algorithm is assumed to be deterministic for
the remainder of this task.

c) If both P and V are deterministic, for every x there is but a single transcript between
P and V . Since (P, V) is an interactive proof, this transcript is accepted by V if and
only if x ∈ L. Thus, the transcript serves as an efficiently verifiable witness if x ∈ L
and if x /∈ L, no transcript can convince V . Thus, L ∈ NP.

d) Let (P, V) be an interactive-proof protocol with q = 0, i.e., V never accepts some
x /∈ L. The situation is similar to that in c): If x ∈ L, the fact that p > q = 0 implies
that there exists an accepting transcript between P and V , which is a witness for x.
If x /∈ L, q = 0 implies that no such transcript exists. Thus, L ∈ NP.

e) For n ≥ 1 we define the protocol (P ′, V ′) as follows: For input x, the protocol (P, V)
is repeated sequentially n times. V ′ accepts x if and only if V accepted x at least
p∗ · n times. We show now that for n large enough (P ′, V ′) meets the definition of an
interactive proof with parameters p′, q′. To do that, let us fix p∗ = p+q

2 , and ε = p−q
2 .

1Recall that the prover’s algorithm need not be efficient.

For i = 1, . . . , n, let Xi be the random variable that is 1 if V accepts x in the ith round
and 0 otherwise, and set X := 1

n

∑
Xi and µ := E[X]. Note that µ = P[Xi = 1] for

any i.

Consider now x ∈ L. In that case µ = P[Xi = 1] ≥ p∗ + ε. Hence,

P[V ′ rejects x] ≤ P[
∑

Xi ≤ p∗n]

= P[
∑

Xi ≤ (p∗ + ε)n− εn]

= P[X ≤ (p∗ + ε)− ε]
≤ P[X ≤ µ− ε]

≤ e−2nε2 .

Consider now x /∈ L. In that case µ = P[Xi = 1] ≤ p∗ − ε. Hence,

P[V ′ accepts x] ≤ P[
∑

Xi ≥ p∗n]

= P[
∑

Xi ≥ (p∗ − ε)n+ εn]

= P[X ≥ (p∗ − ε) + ε]

≤ P[X ≥ µ+ ε]

≤ e−2nε2 .

Concerning the number n of repetitions, note that if for example p′ = 1− δ and q′ = δ
for δ > 0, then completeness and soundness are satisfied if e−2nε

2 ≤ δ. This is the case
if and only if n ≥ 1

2ε
−2 ln(δ−1). This means that δ can be made negligible, whereas ε

needs to be noticeable (asymptotically in the length of the input to P and V) in order
for n to be polynomial.2

2.2 Discrete Logarithms and Interactive Proofs

a) Consider the following interactive protocol:

Peggy Vic

knows x knows z1 = gx, z2 = hx

choose k ∈R Zp

compute t1 = gk, t2 = hk -(t1, t2)

� c
let c ∈R C ⊆ Zp

r = k + cx in Zp -r
check if
(gr, hr)

?
= (t1z

c
1, t2z

c
2)

b) The protocol in a) can be seen both as a proof of the statement that logg z1 = logh z2
as well as proof of knowledge of the exponent x such that z1 = gx and z2 = hx. We
do the analysis as a proof of statement.

Completeness: It is easily seen that Vic always accepts if Peggy knows x and follows
the protocol.

Soundness: Suppose z1 = gx1 and z2 = hx2 for x1 6= x2. Consider a cheating
prover P ′ and assume her first message is (t1, t2). Such a message can be seen as

2See the the lecture notes, Section 1.6, for definitions of negligible, noticeable, and polynomial.

(t1, t2) = (gk1 , hk2) where k1 = logg t1, k2 = logh t2. Consider a challenge c ∈ C. A
reply r causing V to accept must satisfy

(gr, hr) = (gk1gcx1 , hk2hcx2),

which is equivalent to
(gr, g`·r) = (gk1gcx1 , g`·k2g`·cx2),

where ` ∈ Zp is such that h = g`. Thus, Vic accepts if and only if

r = k1 + cx1

r = k2 + cx2,

or, equivalently, if k1 +cx1 = k2 +cx2. This is satisfied only by a single c ∈ Zp, namely
by c = (k2 − k1)/(x1 − x2) (where the denominator is non-zero since x1 6= x2). Thus,
Vic accepts only if said c is chosen, i.e., with probability 1/|C|.
The above protocol is also honest-verifier zero knowledge:

Honest-Verifier Zero-Knowledge: For the honest verifier V , the zero-knowledge
property is proved by showing that for any given challenge c, one can sample transcript
triples with the correct conditional distribution. For a given c, simply sample a random
r and set t1 := grz−c1 and t2 := hrz−c2 . The reader can verify that this results in the
proper distribution.

c) Consider the mapping φ : Zp → G, x 7→ gx. For a group element z ∈ G, Schnorr’s
protocol allows to prove knowledge of a preimage x of z (w.r.t. to φ). The protocol in a)
proceeds exactly like Schnorr’s except that it works for the mapping φ′ : Zq → G×G,
x 7→ (gx, hx). We will see in the next weeks how this can be generalized to any mapping
that is a so-called one-way homomorphism between two groups.

2.3 A Modification of the Schnorr Protocol

Completeness: It is easily verified that if Peggy is honest and knows x, then Vic always
accepts.

Soundness: From the prover’s replies to two different challenges for the same first mes-
sage t, one can compute x such that hx = z: Let (t, c, r) and (t, c′, r′) be two accepting
transcripts with c 6= c′. That is, hr = tcz and hr

′
= tc

′
z. By dividing the first equation

by the second one we get:
hr−r

′
= tc−c

′
= hk(c−c

′),

which implies that k ≡q
r−r′
c−c′ . Since hr = tcz = hkc+x, one can compute x ≡q r−kc. Note

that since |H| = q is prime, c− c′ 6= 0 has an inverse modulo q.

Zero-Knowledge: This protocol is not zero-knowledge, since on challenge 0, r is the
discrete log of z, which is unknown to the simulator.

2.4 IP and PSPACE

In order to prove that IP ⊆ PSPACE, let (P, V) be an interactive proof for a language L.
We argue that L ∈ PSPACE. Given an input x ∈ {0, 1}n, we compute exactly (using
polynomial space) the maximum probability with which a prover can make V accept.

Although the prover is allowed to be all-powerful, we will see that the optimal strategy
can be computed in PSPACE and so it suffices to consider a PSPACE prover in general.
Imagine a tree where each node at level i (with the root at level 0) corresponds to some
sequence of i messages exchanged between the prover and verifier. This tree has polyno-
mial depth (since V can only run for polynomially many rounds), and each node has at

most 2n
c

children (for some constant c), since messages in the protocol have polynomial
length. We recursively assign values to each node of this tree in the following way: a leaf
node is assigned 0 if the verifier rejects, and 1 if the verifier accepts. The value of an
internal node where the prover sends the next message is the maximum over the values
of that node’s children. The value of an internal node where the verifier sends the next
message is the (weighted) average over the values of that node’s children. The value of
the root determines the maximum probability with which a prover can make the verifier
accept on the given input x, and this value can be computed in polynomial space. If this
value is greater than 3/4, then x ∈ L; and if it is less than 1/2 then x /∈ L.

