
ETH Zurich, Department of Computer Science
SS 2021

Prof. Ueli Maurer
Dr. Martin Hirt

Konstantin Gegier
Chen-Da Liu Zhang

Cryptographic Protocols

Solution to Exercise 1

1.1 Padlocks

a) Vic hands Peggy both closed padlocks and looks away. Peggy locks one with the other
(forming a chain) and shows the chain to Vic; if she succeeds, then she has proved
that she can open one of the padlocks. The protocol is trivially complete: if Peggy
knows the combination, she always succeeds. Intuitively, the protocol is also sound,
as there does not seem to be any way of succeeding without opening at least one of
the padlocks.

The task is a proof of knowledge, i.e., knowledge of the combination.

b) As Vic knows all the combinations, he can construct two chain rings of 50 padlocks
each, such that padlock i, for 0 ≤ i < 50, is “chained” to padlocks i − 1 and i + 1
(mod 50) forming the first ring, and padlocks 50 + i, for 0 ≤ i < 50, form the second
ring similarly. Vic gives the rings to Peggy and looks away. Peggy, to prove that
she knows the combination for opening at least one of the padlocks, opens one of the
rings (by opening the padlock whose combination she knows), interlock the two rings
together, and shows the result to Vic. Vic accepts if the two chain rings are interlocked
together.

Completeness, soundness, and zero-knowledge are readily verified.

c) Observe that Peggy knows the combination to at least two padlocks out of seven if and
only if she knows the combination to one padlock out of any subset of six padlocks.

Hence, Peggy can use the protocol from subtask b) to prove sequentially that she
knows one out of six padlocks, for every possible set of six padlocks.

Completeness, soundness, and zero-knowledge are readily verified.

1.2 Graph (Non-)Isomorphism

a) The GNI protocol from the lecture is not zero-knowledge because Vic could cheat by
sending Peggy an arbitrary graph K and learn if K is isomorphic to G0 or G1.

b) The protocol is honest-verifier zero-knowledge, since in the case where the verifier
follows the protocol, he chooses one bit b at random, and receives a bit c = b.

c) Let the three graphs be (G0,G1,G2). The verifier permutes each graph randomly gen-
erating Hi with Hi

∼= Gi for i ∈ {0, 1, 2}, and chooses a shift s ∈ {0, 1, 2} uniformly
at random. Let Ki := H(i+s)mod 3, for i ∈ {0, 1, 2}. The verifier sends (K0,K1,K2)
to the prover, and the prover has to tell what s the verifier has chosen. If the prover
succeeds, the verifier accepts. Otherwise, he rejects.

Completeness: If the three graphs G0,G1,G2 are not all isomorphic, the prover can
tell which shift s the verifier has chosen.

Soundness: Assume that all graphs are isomorphic. In this case, the prover cannot
tell which shift s the verifier has chosen. Hence, he cannot succeed with probability
higher than one third.



Algorithm 1: B(m) using square-root algorithm A

r ←R {1, . . . ,m− 1}
p′ ← gcd(r,m)
if p′ > 1

return p′

a← r2

r′ ← A(m, a)
if r′ ≡ ±r (mod m)

return ⊥
return gcd(r + r′,m)

Honest-Verifier Zero-Knowledge: Intuitively, the above protocol is honest-
verifier zero-knowledge because a cheating verifier chooses a random shift s, and then
receives s′ = s from the prover.

1.3 Square Roots and Factoring

a) - By computing 12, 22, 32, . . . mod n = 7, one obtains r = 3 und r′ = 4.

- Obviously, r = 5 is a root. Therefore so is r′ = 24 = 29− 5 ≡ −r (mod n).

Generally, a number has either two square roots modulo a prime p or none. Thus, ex-
actly half of the elements of Z∗p are quadratic residues, and the other half are quadratic
non-residues. For more information, see the lecture notes, Section 1.5.

Below we use that if n = pq for two primes p and q, Z∗n is isomorphic to Z∗p × Z∗q (cf.
lecture notes, Section 1.4) via the isomorphism1

ψn : Z∗n → Z∗p × Z∗q , x 7→ (Rp(x), Rq(x)).

- Since n = 35 = 5 · 7, we have that Z∗35 ∼= Z∗5 × Z∗7. Thus, it is sufficient to find
the square roots of ψ35(11) = (1, 4) ∈ Z∗5 × Z∗7 and see what they correspond
to in Z∗35. The roots are (±1,±2), i.e., (1, 2), (1, 5), (4, 2), and (4, 5). They
correspond to ψ−135 (1, 2) = 16, ψ−135 (1, 5) = 26, ψ−135 (4, 2) = 9, and ψ−135 (4, 5) = 19
(these correspondences are obtained via the Chinese Remainder Theorem).

In the case where n = 3·5·7 = 105, a = 4, the square roots are 2, 23, 37, 47, 58, 68, 82, 103.
More generally, one can show that if n is the product of k distinct primes, an element
x ∈ Z∗n has either 2k square roots or none.

b) The algorithm B is depicted above.

Recall that a quadratic residue a ∈ Z∗m has four square roots r,−r, r′,−r′. The idea
behind factoring m given algorithm A for computing square roots modulo m, is the
following: If r is chosen randomly, then conditioned on A invoked on a = r2 finding
some root r′, we will have r′ 6≡ ±r (mod m) with probability 1/2. This is due to
the fact that a yields no information about which of the four roots it was computed
from. If r′ ≡ ±r (mod m), it outputs ⊥ and fails. Otherwise, the algorithm outputs
gcd(r + r′,m), which actually is one of the prime factors as we show below:

Since r2 ≡ r′2 (mod m), (r − r′)(r + r′) ≡ 0 (mod m). Moreover, since r 6≡ ±r′
(mod m), m divides neither (r−r′) nor (r+r′). Therefore, either (r−r′) is a multiple
of p and (r + r′) a multiple of q or vice-versa. Thus, computing gcd(r + r′,m) yields
one of the prime factors.

If A(m, a) returns a square root of a uniformly randomly chosen quadratic residue a
with probability α, then B succeeds with probability at least α/2.

1Rn(x) denotes the (unique) remainder when dividing x by n.


