Cryptographic Protocols

Spring 2021

MPC Part 5/2

Active Adversaries / Security with Abort – Summary

Model: t < n/3, active adversary, security with abort.

Preparation: Generate enough random double-sharings $[r]_{t,2t}, \ldots$

MPC Protocol

- Input: P_i wants to input s
 - 1. pick next prepared double-sharing $[r]_{t,2t}$.
 - 2. reconstruct $[r]_t$ towards P_i .
 - 3. P_i : broadcast e = s r.
 - 4. Parties take $[s]_t = [r]_t + e$ as sharing of input.
- Addition / Linear gates: same as passive
- Multiplication: same as passive (with actively-secure public recons.)
- Output: Use reconstruction protocol.

Communication

- $\mathcal{O}(n)$ fe per multiplication/output, \bigcirc
- 1 broadcast per input.

Preparation

• Generate enough triples ([a], [b], [c]) with a, b random and c = ab.

Observation

$$\underbrace{x \cdot y}_{=} = ((x-a)+a) \cdot ((y-b)+b)$$
$$= (x-a)(y-b) + (x-a)b + (y-b)a + ab$$

Multiplication protocol: $[x] \cdot [y]$

- 1. Compute and publicly reconstruct $[u] = [x] [a] \longrightarrow \mathcal{U}$ and $[v] = [y] - [b]. \longrightarrow \mathcal{V}$
- 2. Compute $[x \cdot y] = uv + u[b] + v[a] + [c]$.

Communication: 2 public reconstructions per multiplication. ③

Robustness: The protocol is robust! 😳 😳

Structure

- 1. Non-Robust Computation: Run protocol, parties can abort.
- 2. Fault Detection: $\forall P_i$ broadcasts 1 if aborted, take OR.
- 3. Fault Localization
 - 3.1. Choose referee P_r (any party, e.g. P_1).
 - 3.2. $\forall P_i$: send all random values and all received messages to P_r .
 - 3.3. P_r : identify P_i, P_j disagreeing on m_k , broadcast $(i, j, k, m_k^{(i)}, m_k^{(j)})$.
 - 3.4. P_i, P_j : broadcast "agree" or "accuse".

3.5. If P_i/P_j accuses, then $E = \{P_i, P_r\}/\{P_j, P_r\}$. Else $E = \{P_i, P_j\}$.

4. Player elimination: Eliminate *E*, repeat.

Obstacles

- Additional costs \Rightarrow divide computation into t blocks.
- Secrecy \Rightarrow use player-elimination only in preparation.
- Shrinking player set \Rightarrow all sharings of fixed degree t.

 $\begin{array}{ccc} n > n' & > n'' \\ t > t' & > t'' \end{array}$

Prepare m **Multiplication Triples**

- 1. Initialize $\mathcal{P}' \leftarrow \{P_1, \ldots, P_n\}, t' \leftarrow t$, triples $\mathcal{T} \leftarrow \emptyset$.
- 2. Repeat until $|\mathcal{T}| \geq m$:
 - 2.1 Non-robustly generate block \mathcal{B} of $\ell = m/t$ triples with degree t.
 - 2.2 On abort: $\mathcal{P}' \leftarrow \mathcal{P}' \setminus E$, $t' \leftarrow t' 1$, discard block.
 - 2.3 On success: $\mathcal{T} \leftarrow \mathcal{T} \cup \mathcal{B}$.

Communication: At most t aborts, i.e., at most 2m triples are generated.

Invariant: All sharings with degree t (among parties \mathcal{P}').

New Problem

- Generate multiplication triples with degree t.
- Party set is \mathcal{P}' with $|\mathcal{P}'| = n'$, t' corrupted, where

$$t < n$$

 $h = n - 2, t - 1$

3

$$z + zz' < n$$

Non-Robustly Generate Block of *l* **Multiplication Triples**

- 1. Generate ℓ random double-sharings $[a]_{t',t}$.
- 2. Generate ℓ random double-sharings $[b]_{t',t}$.
- 3. Generate ℓ random double-sharings $[r]_{t'/2t'}$.
- 4. Compute and publicly reconstruct $[s]_{2t'} = [a]_{t'} \cdot [b]_{t'} [r]_{2t'}$.
- 5. Locally compute $[c]_t = [r_t] + s$
- 6. Output triple ($[a]_t, [b]_t, [c]_t$). among P', with (P'/=n')

Communication: $\mathcal{O}(n)$ per triple.

Preparation

- 1. Initialize $\mathcal{P}' \leftarrow \{P_1, \ldots, P_n\}, t' \leftarrow t$, triples $\mathcal{T} \leftarrow \emptyset$.
- 2. Generate triples with degree t, in blocks of size $\ell = m/t$.
- 3. Player-Elimination, until t successful blocks.
- 4. Output triples \mathcal{T} , new party set \mathcal{P}' , new threshold t'.

MPC Protocol parties P', with t' comptions, all degree t, veg. t+2t'in

- Input: Pick next triple, reconstruct $[a]_t$ to P_i , broadcast difference.
- Addition / Linear gates: same as passive.
- Multiplication: Pick next triple, reconstruct $[x]_t [a]_t$ and $[y]_t [b]_t$.
- Output: Use reconstruction protocol.

Communication

- $\mathcal{O}(n)$ fe per multiplication/output, \bigcirc
- 1 broadcast per input.