Cryptographic Protocols

Spring 2021

MPC Part 5

Setting

• Information-theoretic security, active adversary, t < n/3.

Approach

- Values are Shamir-shared with degree $t \rightarrow no \text{ commitments}!$
- Reconstruction deals with faulty shares \rightarrow error-correction codes
- Generating random double-sharings \rightarrow hyper-invertible matrices 2.0
- Public reconstruction \rightarrow new trick

Structure

- 1. Detectable MPC \rightarrow security with abort (abort only in case of cheating)
- 2. Preprocessing phase \rightarrow circuit randomization
- 3. Full security \rightarrow player-elimination framework

Active Adversaries – Local Reconstruction

Goal: Reconstruct sharing $[s]_d$ towards P_i . (d = t or d = 2t)

Protocol

1. $\forall P_j$: send s_j to H_i . 2. P_i : If $\exists g$ with deg $(g) \leq d$ and $|\{j : s_j = g(\alpha_j)\}| \geq d+1+t$ then output s = q(0)else ABORT

Correctness: d + 1 + t shares on $g \Rightarrow d + 1$ "honest" shares \Rightarrow correct g.

Robustness: Robust if at least d + 1 + t honest parties, i.e., if d < n - 2t. 1+1+1 < n-t **Efficiency:** Berlekamp-Welch decoder \Rightarrow find *q* efficiently.

t<"/2

Active Adversaries – Public Reconstruction

Goal: Publicly reconstruct k + 1 sharings $[s_0]_d, \ldots, [s_k]_d$.

High-Level Protocol

- 1. Expand $[s_0]_d, \ldots, [s_k]_d$ to $[u_1]_d, \ldots, [u_n]_d$, with redundancy.
- 2. $\forall P_i$: locally reconstruct $[u_i]_d$ to P_i , send u_i to $\forall P_j$ (might **ABORT**).
- 3. $\forall P_j$: shrink u_1, \ldots, u_n to s_0, \ldots, s_k (might **ABORT**).

Expansion

- Interpret s_0, \ldots, s_k as coefficients of polynomial g of degree k.
- $u_i = g(\alpha_i) = s_0 + s_1 \alpha_i + \ldots + s_k \alpha_i^k$, $[u_i]_d = [s_0]_d + \ldots + [s_k]_d \alpha_i^k$.
- Shrinking: Find coefficients of g s.t. $|\{i : u_i = g(\alpha_i)\}| \ge k + 1 + t$.

Correctness: k + 1 + t values u_i on $g \Rightarrow$ correct g. Robustness: Robust if d < n - 2t and k < n - 2t. k = n - 2t - k

Communication: $\mathcal{O}(n^2)$ fe for k + 1 public reconstructions. \bigcirc

Generate Random Sharings

- 1. $\forall P_i$: chose random s_i , share s_i with degree $t \to [s_i]$.
- 2. All: $2t \begin{bmatrix} r_1 \\ r_n \end{bmatrix} = \begin{bmatrix} HIM \end{bmatrix} \begin{bmatrix} s_1 \\ s_n \end{bmatrix} \leftarrow n-t \\ good, right clearee \\ s_n \end{bmatrix} \leftarrow back \\ known to adversary$

- i) Reconstruct $[r_i]$ towards P_i .
- ii) P_j : check that all shares of $[r_j]$ lie on polynomial of degree t. Otherwise: **ABORT** no alore all cont alore all cont cont
- 4. Output n 2t sharings $[r_{2t+1}], ..., [r_n]$.

Correctness: n-t good $[s_i]$, t checked $[r_i]$, others are linear combinations.

Secrecy: Adv. knows $t [s_i]$ plus $t [r_j]$, any n-2t sharings are random.

Communication: $\mathcal{O}(n^2)$ for n-2t sharings, i.e. $\mathcal{O}(n)$ per sharing. \bigcirc 2 1/2

Generate Random Double-Sharings

- 1. $\forall P_i$: chose random s_i , share s_i with degrees t and $2t \rightarrow [s_i]_{t,2t}$.
- 2. All: $\begin{bmatrix} [r_1]_{t,2t} \\ \vdots \\ [r_n]_{t,2t} \end{bmatrix} = \begin{bmatrix} & \mathsf{HIM} & \end{bmatrix} \begin{bmatrix} [s_1]_{t,2t} \\ \vdots \\ [s_n]_{t,2t} \end{bmatrix}$

3. For j = 1, ..., 2t:

i) Reconstruct $[r_j]_{t,2t}$ towards P_j .

- ii) P_j : check that *all* shares of $[r_j]_t$ lie on degree-*t* polynomial *g*, AND that *all* shares of $[r_j]_{2t}$ lie on degree-2*t* polynomial *g'*, AND that g(0) = g'(0). Otherwise: **ABORT**
- 4. Output n 2t double-sharings $[r_{2t+1}]_{t,2t}, \ldots, [r_n]_{t,2t}$.

Observe: Linear combination of (correct) random double-sharings are (correct) random double-sharings!

 \rightarrow same analysis as for "normal" sharings.