Cryptographic Protocols

Spring 2021

MPC Part 5

Setting

- Information-theoretic security, active adversary, $t<n / 3$.

Approach

- Values are Shamir-shared with degree $t \rightarrow$ no commitments!
- Reconstruction deals with faulty shares \rightarrow error-correction codes
- Generating random double-sharings \rightarrow hyper-invertible matrices 2.0
- Public reconstruction \rightarrow new trick

Structure

1. Detectable MPC \rightarrow security with abort (abort only in case of cheating)
2. Preprocessing phase \rightarrow circuit randomization
3. Full security \rightarrow player-elimination framework

Goal: Reconstruct sharing $[s]_{d}$ towards $P_{i} . \quad(d=t$ or $d=2 t)$

Protocol

1. $\forall P_{j}$: send s_{j} to H_{j}.
2. P_{i} : If $\exists g$ with $\operatorname{deg}(g) \leq d$ and $\left|\left\{j: s_{j}=g\left(\alpha_{j}\right)\right\}\right| \geq d+1+t$ then output $s=g(0)$
else
ABORT
Correctness: $d+1+t$ shares on $g \Rightarrow d+1$ "honest" shares \Rightarrow correct g.
Robustness: Robust if at least $d+1+t$ honest parties, i.e., if $d<n-2 t$.

$$
d+1+t \leqslant n-t
$$

Efficiency: Berlekamp-Welch decoder \Rightarrow find g efficiently.

Active Adversaries - Public Reconstruction

Goal: Publicly reconstruct $k+1$ shearings $\left[s_{0}\right]_{d}, \ldots,\left[s_{k}\right]_{d}$.

High-Level Protocol

1. Expand $\left[s_{0}\right]_{d}, \ldots,\left[s_{k}\right]_{d}$ to $\left[u_{1}\right]_{d}, \ldots,\left[u_{n}\right]_{d}$, with redundancy.
2. $\forall P_{i}$: locally reconstruct $\left[u_{i}\right]_{d}$ to P_{i}, send u_{i} to $\forall P_{j}$ (might ABORT).
3. $\forall P_{j}$: shrink u_{1}, \ldots, u_{n} to s_{0}, \ldots, s_{k} (might ABORT).

Expansion

- Interpret s_{0}, \ldots, s_{k} as coefficients of polynomial g of degree k.
- $u_{i}=g\left(\alpha_{i}\right)=s_{0}+s_{1} \alpha_{i}+\ldots+s_{k} \alpha_{i}^{k}, \quad\left[u_{i}\right]_{d}=\left[s_{0}\right]_{d}+\ldots+\left[s_{k}\right]_{d} \alpha_{i}^{k}$.
- Shrinking: Find coefficients of g s.t. $\left|\left\{i: u_{i}=g\left(\alpha_{i}\right)\right\}\right| \geq k+1+t$.

Correctness: $k+1+t$ values u_{i} on $g \Rightarrow$ correct g.
Robustness: Robust if $d<n-2 t$ and $k<n-2 t$.
eng $k=n \cdot 2 t-1$
Communication: $\mathcal{O}\left(n^{2}\right)$ fe for $k+1$ public reconstructions.

Active Adversaries - Generate Random Sharings

Generate Random Sharings

1. $\forall P_{i}$: chose random s_{i}, share s_{i} with degree $t \rightarrow\left[s_{i}\right]$.
2. All:

3. For $j=1, \ldots, 2 t$:

$$
]\left[\begin{array}{c}
{\left[s_{1}\right]} \\
\vdots \\
{\left[s_{n}\right]}
\end{array}\right] \leftarrow n-t \text { "geod", right degree }
$$ bad known to aduescry

i) Reconstruct $\left[r_{j}\right.$] towards P_{j}.
ii) P_{j} : check that all shares of $\left[r_{j}\right]$ lie on polynomial of degree t. Otherwise: ABORT no about \rightarrow all [S,] are good
4. Output $n-2 t$ sharing $\left[r_{2 t+1}\right], \ldots,\left[r_{n}\right]$.

Correctness: $n-t$ good $\left[s_{i}\right], t$ checked $\left[r_{j}\right.$], others are linear combinations.
Secrecy: Adv. knows t [s_{i}] plus $t\left[r_{j}\right]$, any $n-2 t$ shearings are random.
Communication: $\mathcal{O}\left(n^{2}\right)$ for $n-2 t$ shearings, ie. $\mathcal{O}(n)$ per sharing. $\approx n / 3$

Active Adversaries - Generate Random Double-Sharings

Generate Random Double-Sharings

1. $\forall P_{i}$: chose random s_{i}, share s_{i} with degrees t and $2 t \rightarrow\left[s_{i}\right]_{t, 2 t}$.
2. All:

$$
\left[\begin{array}{c}
{\left[r_{1}\right]_{t, 2 t}} \\
{\left[r_{n}\right]_{t, 2 t}}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{HIM}
\end{array}\right]\left[\begin{array}{l}
{\left[s_{1}\right]_{t, 2 t}} \\
{\left[\begin{array}{l}
\vdots \\
s_{n}
\end{array}\right]_{t, 2 t}}
\end{array}\right]
$$

3. For $j=1, \ldots, 2 t$:
i) Reconstruct $\left[r_{j}\right]_{t, 2 t}$ towards P_{j}.
ii) P_{j} : check that all shares of $\left[r_{j}\right]_{t}$ lie on degree- t polynomial g, AND that all shares of $\left[r_{j}\right]_{2 t}$ lie on degree- $2 t$ polynomial g^{\prime}, AND that $g(0)=g^{\prime}(0)$.
Otherwise: ABORT
4. Output $n-2 t$ double-sharings $\left[r_{2 t+1}\right]_{t, 2 t}, \ldots,\left[r_{n}\right]_{t, 2 t}$.

Observe: Linear combination of (correct) random double-sharings are (correct) random double-sharings!
\rightarrow same analysis as for "normal" sharings.

