
Cryptographic Protocols

Spring 2021

MPC Part 5

Active Adversaries – High-Level Approach 2

Setting
• Information-theoretic security, active adversary, t < n/3.

Approach
• Values are Shamir-shared with degree t→ no commitments!

• Reconstruction deals with faulty shares→ error-correction codes

• Generating random double-sharings→ hyper-invertible matrices 2.0

• Public reconstruction→ new trick

Structure
1. Detectable MPC→ security with abort (abort only in case of cheating)

2. Preprocessing phase→ circuit randomization

3. Full security→ player-elimination framework

Active Adversaries – Local Reconstruction 3

Goal: Reconstruct sharing [s]d towards Pi. (d = t or d = 2t)

Protocol
1. ∀Pj: send sj to Pi.

2. Pi: If ∃ g with deg(g) ≤ d and
∣∣∣{j : sj = g(αj)}

∣∣∣ ≥ d+1+t then
output s = g(0)

else
ABORT

Correctness: d+1+ t shares on g⇒ d+1 “honest” shares⇒ correct g.

Robustness: Robust if at least d+1+ t honest parties, i.e., if d < n−2t.

Efficiency: Berlekamp-Welch decoder⇒ find g efficiently.

Active Adversaries – Public Reconstruction 4

Goal: Publicly reconstruct k+1 sharings [s0]d, . . . , [sk]d.

High-Level Protocol
1. Expand [s0]d, . . . , [sk]d to [u1]d, . . . , [un]d, with redundancy.

2. ∀Pi: locally reconstruct [ui]d to Pi, send ui to ∀Pj (might ABORT).

3. ∀Pj: shrink u1, . . . , un to s0, . . . , sk (might ABORT).

Expansion
• Interpret s0, . . . , sk as coefficients of polynomial g of degree k.

• ui = g(αi) = s0 +s1αi+. . .+skα
k
i , [ui]d = [s0]d+. . .+[sk]dα

k
i .

• Shrinking: Find coefficients of g s.t. |{i : ui = g(αi)}| ≥ k+1+ t.

Correctness: k+1+ t values ui on g⇒ correct g.

Robustness: Robust if d < n− 2t and k < n− 2t.

Communication: O(n2) fe for k+1 public reconstructions. ,

Active Adversaries – Generate Random Sharings 5

Generate Random Sharings
1. ∀Pi: chose random si, share si with degree t→ [si].

2. All:


[r1]...
[rn]


 =


 HIM






[s1]...
[sn]




3. For j = 1, . . . ,2t:
i) Reconstruct [rj] towards Pj.

ii) Pj: check that all shares of [rj] lie on polynomial of degree t.
Otherwise: ABORT

4. Output n− 2t sharings [r2t+1], . . . , [rn].

Correctness: n−t good [si], t checked [rj], others are linear combinations.

Secrecy: Adv. knows t [si] plus t [rj], any n−2t sharings are random.

Communication: O(n2) for n−2t sharings, i.e. O(n) per sharing. ,

Active Adversaries – Generate Random Double-Sharings 6

Generate Random Double-Sharings
1. ∀Pi: chose random si, share si with degrees t and 2t→ [si]t,2t.

2. All:


[r1]t,2t...
[rn]t,2t


 =


 HIM






[s1]t,2t...
[sn]t,2t




3. For j = 1, . . . ,2t:
i) Reconstruct [rj]t,2t towards Pj.

ii) Pj: check that all shares of [rj]t lie on degree-t polynomial g,
AND that all shares of [rj]2t lie on degree-2t polynomial g′,
AND that g(0) = g′(0).
Otherwise: ABORT

4. Output n− 2t double-sharings [r2t+1]t,2t, . . . , [rn]t,2t.

Observe: Linear combination of (correct) random double-sharings are

(correct) random double-sharings!

→ same analysis as for “normal” sharings.

Active Adversaries / Security with Abort – Summary 7

Model: t < n/3, active adversary, security with abort.

Preparation: Generate enough random double-sharings [r]t,2t, . . .

MPC Protocol
• Input: Pi wants to input s

1. pick next prepared double-sharing [r]t,2t.
2. reconstruct [r]t towards Pi.
3. Pi: broadcast e = s− r.
4. Parties take [s]t = [r]t+ e as sharing of input.

• Addition / Linear gates: same as passive

• Multiplication: same as passive (with actively-secure public recons.)

• Output: Use reconstruction protocol.

Communication
• O(n) fe per multiplication/output, ,
• 1 broadcast per input.

Circuit Randomization 8

Preparation
• Generate enough triples ([a], [b], [c]) with a, b random and c = ab.

Observation
x · y = ((x− a) + a) · ((y − b) + b)

= (x− a)(y − b) + (x− a)b+ (y − b)a+ ab

Multiplication protocol: [x] · [y]
1. Compute and publicly reconstruct [u] = [x]− [a]

and [v] = [y]− [b].

2. Compute [x · y] = uv+ u[b] + v[a] + [c].

Communication: 2 public reconstructions per multiplication. ,
Robustness: The protocol is robust! ,,

Player Elimination Framework 9

Structure
1. Non-Robust Computation: Run protocol, parties can abort.

2. Fault Detection: ∀Pi broadcasts 1 if aborted, take OR.

3. Fault Localization
3.1. Choose referee Pr (any party, e.g. P1).
3.2. ∀Pi: send all random values and all received messages to Pr.
3.3. Pr: identify Pi, Pj disagreeing on mk, broadcast (i, j, k,m(i)

k ,m
(j)
k).

3.4. Pi, Pj: broadcast “agree” or “accuse”.
3.5. If Pi/Pj accuses, then E = {Pi, Pr}/{Pj, Pr}. Else E = {Pi, Pj}.

4. Player elimination: Eliminate E, repeat.

Obstacles
• Additional costs⇒ divide computation into t blocks.

• Secrecy⇒ use player-elimination only in preparation.

• Shrinking player set⇒ all sharings of fixed degree t.

Prepare Multiplication Triples I 10

Prepare m Multiplication Triples
1. Initialize P ′← {P1, . . . , Pn}, t′← t, triples T ← ∅.
2. Repeat until |T | ≥ m:

2.1 Non-robustly generate block B of ` = m/t triples with degree t.

2.2 On abort: P ′← P ′ \ E, t′← t′ − 1, discard block.

2.3 On success: T ← T ∪ B.

Communication: At most t aborts, i.e., at most 2m triples are generated.

Invariant: All sharings with degree t (among parties P ′).

New Problem
• Generate multiplication triples with degree t.

• Party set is P ′ with |P ′| = n′, t′ corrupted, where

Prepare Multiplication Triples II 11

Non-Robustly Generate Block of ` Multiplication Triples
1. Generate ` random double-sharings [a]t′,t.

2. Generate ` random double-sharings [b]t′,t.

3. Generate ` random double-sharings [r]t′,2t′.

4. Compute and publicly reconstruct [s]2t′ = [a]t′ · [b]t′ − [r]2t′.

5. Locally compute [c]t = [rt] + s

6. Output triple ([a]t, [b]t, [c]t).

Communication: O(n) per triple.

Active Adversaries / Full Security – Summary 12

Preparation
1. Initialize P ′← {P1, . . . , Pn}, t′← t, triples T ← ∅.
2. Generate triples with degree t, in blocks of size ` = m/t.

3. Player-Elimination, until t successful blocks.

4. Output triples T , new party set P ′, new threshold t′.

MPC Protocol
• Input: Pick next triple, reconstruct [a]t to Pi, broadcast difference.

• Addition / Linear gates: same as passive.

• Multiplication: Pick next triple, reconstruct [x]t − [a]t and [y]t − [b]t.

• Output: Use reconstruction protocol.

Communication
• O(n) fe per multiplication/output, ,
• 1 broadcast per input.

