Cryptographic Protocols
Spring 2021

MPC Part 5

Active Adversaries — High-Level Approach 2

Setting
o Information-theoretic security, active adversary, ¢ < n/3.

Approach
e Values are Shamir-shared with degree ¢ — no commitments!
e Reconstruction deals with faulty shares — error-correction codes
e Generating random double-sharings — hyper-invertible matrices 2.0
e Public reconstruction — new trick

Structure

1. Detectable MPC — security with abort (abort only in case of cheating)
2. Preprocessing phase — circuit randomization

3. Full security — player-elimination framework

Active Adversaries — Local Reconstruction 3

Active Adversaries — Public Reconstruction 4

Goal: Reconstruct sharing [s]; towards P;. (d =t ord = 2t)

Protocol

1. VPj:send s; to P;.

2. P;: If3gwith deg(g) < dand [{j : s; = g(a;)}| > d+ 1+t then
output s = g(0)

else
ABORT

Correctness: d+ 1+t shares on g = d+ 1 “honest” shares = correct g.
Robustness: Robust if at least d + 1 + ¢ honest parties, i.e., if d < n — 2t.

Efficiency: Berlekamp-Welch decoder = find g efficiently.

Goal: Publicly reconstruct k + 1 sharings [solq, - - -, [Skla-

High-Level Protocol
1. Expand [solg; - - -, [sk]q to [u1lgs - - - s [un]g, With redundancy.
2. VP;: locally reconstruct [u;]4 to P;, send u; to VP; (might ABORT).

3. VP;: shrink ug, ..., un 10 sq, . . ., s, (Might ABORT).
Expansion
e Interpret sq, ..., s as coefficients of polynomial g of degree k.

o u; = g(oy) = sg +s10;+. .. +spal, [uly = [sola+-. - +[splaaf.
e Shrinking: Find coefficients of g s.t. [{i : u; = g(a;)} > k+ 1+ ¢

Correctness: k + 1 + ¢ values u; on g = correct g.
Robustness: Robustifd <n — 2t and k < n — 2t.

Communication: ©(n?) fe for k 4 1 public reconstructions. ©

Active Adversaries — Generate Random Sharings 5

Active Adversaries — Generate Random Double-Sharings 6

Generate Random Sharings
1. VP;: chose random s;, share s; with degree ¢t — [s;].

2. All: [[7«:1] HiM } [[s}]}
[sn)

[rz]
3. Forj=1,...,2t:
i) Reconstruct [r;] towards P;.
ii) P;: check that all shares of [r;] lie on polynomial of degree t.
Otherwise: ABORT
4. Output n — 2t sharings [ro;41], ..., [ra].

Correctness: n—t good [s;], t checked [r;], others are linear combinations.
Secrecy: Adv. knows ¢ [s;] plus ¢ [r;], any n—2t sharings are random.

Communication: O(n?) for n—2t sharings, i.e. O(n) per sharing. ©

Generate Random Double-Sharings
1. VP;: chose random s;, share s; with degrees ¢ and 2t — [s;]; 2.

2. All: [[Tllzt’Qt:| _ { HIM } {[51]}21
[Tn]t,Qt [Sn]t,Qt

3. Forj=1,...,2t
i) Reconstruct [r;]; o; towards P;.

ii) P;: check that all shares of [r;]; lie on degree-t polynomial g,
AND that all shares of [r;]2 lie on degree-2t polynomial ¢/,
AND that g(0) = ¢/(0).
Otherwise: ABORT

4. Output n — 2t double-sharings [ro;4-1]¢,2¢: - - - » [Tl e, 2t

Observe: Linear combination of (correct) random double-sharings are
(correct) random double-sharings!
— same analysis as for “normal” sharings.

Active Adversaries / Security with Abort — Summary 7

Circuit Randomization 8

Model: t < n/3, active adversary, security with abort.
Preparation: Generate enough random double-sharings [7]; o, . . -

MPC Protocol
e Input: P; wants to input s
1. pick next prepared double-sharing [r]; 2.
2. reconstruct [r]; towards P;.
3. P;:broadcaste = s —r.
4. Parties take [s]; = [r]; + e as sharing of input.

e Addition / Linear gates: same as passive
e Multiplication: same as passive (with actively-secure public recons.)
e Output: Use reconstruction protocol.
Communication
o O(n) fe per multiplication/output, ©
o 1 broadcast per input.

Preparation
e Generate enough triples ([a], [b], [c]) with a, b random and ¢ = ab.
Observation
z-y =({z—a)+a) ((y—0)+0b)
=(@-a)(y—b)+(z—a)+ (y—bla+ab
Multiplication protocol: [z] - [y]
1. Compute and publicly reconstruct [u] = [z] — [a]
and [v] = [y] — [b].
2. Compute [z - y] = uv + u[b] + v[a] + [c].

Communication: 2 public reconstructions per multiplication. ©

Robustness: The protocol is robust! ©®©

Player Elimination Framework 9

Prepare Multiplication Triples | 10

Structure
1. Non-Robust Computation: Run protocol, parties can abort.
2. Fault Detection: VP; broadcasts 1 if aborted, take OR.
3. Fault Localization
3.1. Choose referee P, (any party, e.g. Pp).
3.2. VP;: send all random values and all received messages to P;.
3. Pr:identify P;, P; disagreeing on my, broadcast (i, j, k, m,(f), m,(cj)).
34. P;, P;: broadcast “agree” or “accuse”.
3s. If P;/P; accuses, then E = {P;, P} /{P;, Pr}. Else E = {P;, P;}.
4. Player elimination: Eliminate E, repeat.

Obstacles
e Additional costs = divide computation into ¢ blocks.
e Secrecy = use player-elimination only in preparation.
e Shrinking player set = all sharings of fixed degree ¢.

Prepare m Multiplication Triples

1. Initialize P’ < {Py,..., Pp}, t' < t, triples T <+ 0.

2. Repeat until | 7] > m:
2.1 Non-robustly generate block B of £ = m/t triples with degree ¢.
22 Onabort: P/ «+ P'\ E, ¢ + ¢ — 1, discard block.
23 Onsuccess: T + T UB.

Communication: At most ¢ aborts, i.e., at most 2m triples are generated.
Invariant: All sharings with degree ¢ (among parties 7).

New Problem
e Generate multiplication triples with degree ¢.
o Party setis P’ with |P/| = n/, ¢ corrupted, where

Prepare Multiplication Triples I 1

Active Adversaries / Full Security — Summary 12

Non-Robustly Generate Block of ¢ Multiplication Triples

. Generate ¢ random double-sharings [a] ;.

. Generate ¢ random double-sharings [b]/ ;.

. Generate ¢ random double-sharings [r]y 5.

. Compute and publicly reconstruct [s]oy = [a]y - [b]y — [r]op-
. Locally compute [c]; = [rd] + s

. Output triple ([als, [b]¢, [c]t)-

[& B N s S R

Communication: O(n) per triple.

Preparation

1. Initialize P’ < {Py,..., Pa}, t' <+ t, triples T <+ 0.

2. Generate triples with degree ¢, in blocks of size £ = m/t.

3. Player-Elimination, until ¢ successful blocks.

4. Output triples 7, new party set 7, new threshold .

MPC Protocol
e Input: Pick next triple, reconstruct [a]; to P;, broadcast difference.
e Addition / Linear gates: same as passive.
e Multiplication: Pick next triple, reconstruct [z]; — [al¢ and [y]; — [b]¢.
e Output: Use reconstruction protocol.

Communication
e O(n) fe per multiplication/output, ©
e 1 broadcast per input.

