Cryptographic Protocols

Spring 2021

MPC Part 4 (shortened)

Notation: n parties, m multiplications, "fe" = field element.

| Passive | i.t., $t<n / 2$ |
| :--- | :--- | :--- |
| Share | $\mathcal{O}(n)$ fe |
| Mult | $\mathcal{O}(n)$ Share $=\mathcal{O}\left(n^{2}\right) \mathrm{fe}$ |

Active	crypto., $t<n / 2$	i.t., $t<n / 3$
Broadcast	$\mathcal{O}\left(n^{4}\right)$ [not seen]	$\mathcal{O}\left(n^{2}\right)$ [seen: $\left.\mathcal{O}\left(n^{3}\right)\right]$
Commit	1 Broadcast $=\mathcal{O}\left(n^{4}\right)$ fe	$\mathcal{O}\left(n^{2}\right)$ Broadcast $=\mathcal{O}\left(n^{4}\right)$ fe
Share	$\mathcal{O}(n)$ Commit $=\mathcal{O}\left(n^{5}\right) \mathrm{fe}$	
Mult	$\mathcal{O}(n)$ Share $=\mathcal{O}\left(n^{6}\right) \mathrm{fe}$	

Example: $n=100$, $1 \mathrm{fe}=32 \mathrm{bit}, m=10^{6}$ multiplications.
Passive: ca. 40 Gigabyte / Active: ca. 4000 Petabyte of communication.
Today: Active, i.t., 400 Megabyte of communication. ($10^{10} \mathrm{x}$ faster!).

Passive Adversaries - The Multiplication

Notation

- $[s]_{d}-$ a sharing of s with degree d.
- $[s]_{d, d^{\prime}}$ - two (independent) sharings of (same) s with degrees d and d^{\prime}. Idea: Assume $[r]_{t, 2 t}$ for random r is given - random double-sharing.

Multiplication - Sharings $[a]_{t},[b]_{t},[r]_{t, 2 t} \rightarrow$ Product $[c]_{t}$

1. $\forall P_{i}$: compute $e_{i}=a_{i} \cdot b_{i} \rightarrow[e]_{2 t}$.
2. Compute and reconstruct to all $[s]_{2 t}=[e]_{2 t}-[r]_{2 t}$.

Assumption:
3. Compute $[c]_{t}=[r]_{t}+s$ (locally).
\Rightarrow Communication: 1 Public Reconstruction $=\mathcal{O}(n)$ fe. \odot
New Problem: Generate random double-sharings, efficiently!
Step 1: Generate random sharings (communication: $\mathcal{O}(n)$ fe).
Step 2: Generate random double-sharings (same costs).

Passive Adversaries - Generate Random Sharings I

Approach 1 (sum of sharings)

- Protocol: Every P_{i} shares random s_{i}, let $[r]=\left[s_{1}\right]+\ldots+\left[s_{n}\right]$.
- Communication: $\mathcal{O}\left(n^{2}\right)$. $)^{2}$

Approach 2 (use less sharings)

- Protocol: Only P_{1}, \ldots, P_{t+1} share random s_{i}, let $[r]=\left[s_{1}\right]+\ldots+\left[s_{t+1}\right]$.
- Communication: $\mathcal{O}(n t)$, for $t \approx n / 2$, this is $\mathcal{O}\left(n^{2}\right)$. $)^{-}$

Approach 3 (extract multiple values)

- Protocol: Every P_{i} shares random s_{i}, let
$\left[r_{1}\right]=3\left[s_{1}\right]+2\left[s_{2}\right]+\ldots+4\left[s_{n}\right]$
$\left[r_{2}\right]=1\left[s_{1}\right]+8\left[s_{2}\right]+\ldots+1\left[s_{n}\right]$
$\left[r_{3}\right]=7\left[s_{1}\right]+\ldots$

- Communication: $\mathcal{O}\left(n^{2}\right)$, but for m random sharings.
- Ideally: $m=n-t$. $\cdot ; \quad$ Requirements on M ?

Hyper-Invertible Functions and Matrices

Def.: A function $f: \mathcal{F}^{n} \rightarrow \mathcal{F}^{m},\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(y_{1}, \ldots, y_{m}\right)$ is hyper-invertible iff for any $k \leq n$ inputs x_{i} and any $n-k$ outputs y_{j}, all other inputs and outputs are uniquely defined.

Example: $f: \mathcal{F}^{5} \rightarrow \mathcal{F}^{3}$ is hyper-invertible, then there exist

- $f_{1}:\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}\right) \mapsto\left(x_{5}, y_{2}, y_{3}\right)$,
- $f_{2}:\left(x_{1}, x_{3}, x_{5}, y_{2}, y_{3}\right) \mapsto\left(x_{2}, x_{4}, y_{1}\right)$,
- $f_{3}:\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right) \mapsto\left(x_{3}, x_{4}, x_{5}\right)$,
- ...

Def.: A matrix M over \mathcal{F} is hyper-invertible iff every non-trivial square sub-matrix of M is invertible.

$$
\left[\begin{array}{ccccc}
\cdot & x & \cdots & x & x \\
\cdot & x & \cdots & \dot{x} & \dot{x} \\
\cdot & \cdots & \cdots & x & x
\end{array}\right]
$$

Lemma: Let M be an m-by- n matrix over \mathcal{F} and f be the induced linear function $f: \mathcal{F}^{n} \rightarrow \mathcal{F}^{m}$. Then, f is hyper-invertible iff M is hyper-invertible.

Linear Hyper-Invertible Function - Construction I

$g: \mathcal{F}^{n} \rightarrow \mathcal{F}^{m},\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(y_{1}, \ldots, y_{m}\right)$, linear \& hyper-invertible

Linear Hyper-Invertible Function - Construction II
Given: Points $\left(\alpha_{1}, x_{1}\right), \ldots,\left(\alpha_{n}, x_{n}\right)$.
Wanted: y_{1}, \ldots, y_{m}, s.t. $\left(\beta_{1}, y_{1}\right), \ldots,\left(\beta_{m}, y_{m}\right)$ on same polynomial.

A little bit of Lagrange

- Reminder: $\lambda_{j}(x)$ is polynomial with $\lambda_{j}\left(\alpha_{i}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}$
- $g(x)=\lambda_{1}(x) \cdot x_{1}+\lambda_{2}(x) \cdot x_{2}+\ldots+\lambda_{n}(x) \cdot x_{n}$.
- $y_{1}=\lambda_{1}\left(\beta_{1}\right) \cdot x_{1}+\lambda_{2}\left(\beta_{1}\right) \cdot x_{2}+\ldots+\lambda_{n}\left(\beta_{1}\right) \cdot x_{n} \quad$ (a weighted sum!)
- $y_{2}=\lambda_{1}\left(\beta_{2}\right) \cdot x_{1}+\lambda_{2}\left(\beta_{2}\right) \cdot x_{2}+\ldots+\lambda_{n}\left(\beta_{2}\right) \cdot x_{n} \quad$ (a weighted sum!)
$\bullet\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{m}\end{array}\right]=\left[\begin{array}{ccccc}m_{11} & m_{12} & m_{13} & \cdots & m_{1 n} \\ m_{21} & m_{22} & m_{23} & \cdots & m_{2 n} \\ \vdots & \vdots & \vdots & & \vdots \\ m_{m 1} & m_{m 2} & m_{m 3} & \cdots & m_{m n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$, where $m_{i j}=\lambda_{j}\left(\beta_{i}\right)$

Generate Random Double-Sharings

1. $\forall P_{i}$: chose random s_{i}, share s_{i} with degree $t \rightarrow\left[s_{i}\right]_{t}$, and share s_{i} with degree $2 t \rightarrow\left[s_{i}\right]_{2 t}$
2. All:

$$
\left[\begin{array}{c}
{\left[r_{1}\right]_{t, 2 t}} \\
\vdots \\
{\left[r_{n-t}\right]_{t, 2 t}}
\end{array}\right]=\left[\begin{array}{ll}
\quad \mathrm{HIM}
\end{array}\right]\left[\begin{array}{c}
{\left[s_{1}\right]_{t, 2 t}} \\
\vdots \\
{\left[s_{n}\right]_{t, 2 t}}
\end{array}\right]
$$

i.e., each P_{i} applies HIM on his respective shares.
3. Output $n-t$ double-sharings $\left[r_{1}\right]_{t, 2 t}, \ldots,\left[r_{n-t}\right]_{t, 2 t}$.

Analysis

- Bijection from "good" inputs $\left\{\left[s_{i}\right]_{t, 2 t}\right\}_{i \notin B}$ onto outputs $\left\{\left[r_{j}\right]_{t, 2 t}\right\}_{j}$.
- Double-sharing property "survives" HIM.

Communication: $\mathcal{O}\left(n^{2}\right)$ fe for $n-t$ double sharings, amortized $\mathcal{O}(n)$ fe per double sharing. ©

Passive Adversaries - Summary

 11Model: $t<n / 2$, passive, perfect security.
Preparation: Generate enough random double-sharings $[r]_{t, 2 t}, \ldots$

MPC Protocol

- Input: P_{i} wants to input s

1. P_{i} : secret-share $s \rightarrow[s]$

- Addition / Linear gates: $[c]=f([a],[b], \ldots)$

1. $\forall P_{i}: c_{i}=f\left(a_{i}, b_{i}, \ldots\right)$.

- Multiplication: $[c]=[a] \cdot[b]$

1. pick random double-sharing $[r]_{t, 2 t}$.
2. $\forall P_{i}$: compute $e_{i}=a_{i} \cdot b_{i} \rightarrow[e]_{2 t}$.
3. Compute and publicly-reconstruct $[s]_{2 t}=[e]_{2 t}-[r]_{2 t}$.
4. $[c]_{t}=[r]_{t}+s$.

- Output: P_{i} shall receive output $[s]$ 1. Reconstruct $[s]$ towards P_{i}.

Communication: $\mathcal{O}(n)$ fe per input/multiplication/output. ©)

