

Hyper-Invertible Functions and Matrices	6
Def.: A function $f : \mathcal{F}^n \to \mathcal{F}^m, (x_1, \ldots, x_n) \mapsto (y_1, \ldots$ is hyper-invertible iff for any $k \leq n$ inputs x_i and an y_j , all other inputs and outputs are uniquely defined.	
Example: $f : \mathcal{F}^5 \to \mathcal{F}^3$ is hyper-invertible, then there exist • $f_1 : (x_1, x_2, x_3, x_4, y_1) \mapsto (x_5, y_2, y_3),$ • $f_2 : (x_1, x_3, x_5, y_2, y_3) \mapsto (x_2, x_4, y_1),$ • $f_3 : (x_1, x_2, y_1, y_2, y_3) \mapsto (x_3, x_4, x_5),$	
• Def.: A matrix M over \mathcal{F} is hyper-invertible iff every non-trivial square sub-matrix of M is invertible.	$\left[\begin{array}{cccc} \cdot & \cdot & \cdot & \cdot & \times & \times \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \times & \cdot & \cdot & \times & \times \\ \cdot & \times & \cdot & \cdot & \times & \times \end{array}\right]$
Lemma: Let M be an m -by- n matrix over \mathcal{F} and f be the i function $f : \mathcal{F}^n \to \mathcal{F}^m$. Then, f is hyper-invertible iff M is l	

