Cryptographic Protocols
Spring 2021

MPC Part 4 (shortened)

MPC Protocols — Communication Complexities 2

Notation: n parties, m multiplications, “fe” = field element.

Passive i.t,t <n/2

Share O(n) fe

Mult O(n) Share = O(n?) fe
Active crypto., t <n/2 it,t<n/3

Broadcast | O(n*) [not seen] O(n?) [seen: O(n3)]
Commit 1 Broadcast = O(n?) fe | O(n?) Broadcast = O(n?) fe
Share O(n) Commit = O(n®) fe

Mult O(n) Share = O(n®) fe

Example: n = 100, 1fe = 32 bit, m = 10 multiplications.
Passive: ca. 40 Gigabyte / Active: ca. 4000 Petabyte of communication.

Today: Active, i.t., 400 Megabyte of communication. (1010 x faster!).

Passive Adversaries — Share and Reconstruct 3

Passive Adversaries — The Multiplication 4

Goal: Everything linear (i.e., O(n) fe per operation)

Share — Dealer P; shares secret s with degree d

e VP;: P, sends share s; on degree-d polynomial to P;. Assumption:
e Communication: O(n) fe. ©
Reconstruction — Reconstruct sharing [s] towards P; -
. 7| Assumption:
e VP;:send s; to Pj; P; interpolates s (degree d).

e Communication: O(n) fe. ©

Public Reconstruction — Reconstruct sharing [s] to all
e 1) VP;: send s; to Pp; 2) P interpolates s and sends it to VP;.

Notation

o [s]y — a sharing of s with degree d.

e [s]4 4 — two (independent) sharings of (same) s with degrees d and d.
Idea: Assume [r]; o; for random r is given — random double-sharing.

Multiplication — Sharings [a];, [b]¢, [r]; 2 — Product [c];
1. VP;: compute e; = a; - b; — [e] o4
2. Compute and reconstruct to all [s]o; = [e]2 — [r]2¢-
3. Compute [c]; = [r]: + s (locally).
= Communication: 1 Public Reconstruction = O(n) fe. ©

Assumption:

New Problem: Generate random double-sharings, efficiently!

* Communication: O(n) fe. © Assumption: Step 1: Generate random sharings (communication: O(n) fe).
Step 2: Generate random double-sharings (same costs).
Passive Adversaries — Generate Random Sharings | 5 Hyper-Invertible Functions and Matrices 6

Approach 1 (sum of sharings)
e Protocol: Every P; shares random s;, let [r] =[s1]+...4 [sn]-
e Communication: O(n2). @
Approach 2 (use less sharings)
e Protocol: Only P4, ..., P,y share random s;, let [r] =[s1]+...+[s;1]-
e Communication: O(nt), for t ~ n/2, thisis O(n2). @
Approach 3 (extract multiple values)

e Protocol: Every P; shares random s;, let
i [s1]

[r1] = 3[s1] + 2[so] + ... + 4[sn) (1] L]
[ro] = 1[s1] + 8[s2] + ... + 1[sn] s { ; } — [M } 52
[ra] = 7[s1] + ... [rm] o

e Communication: ©(n?2), but for m random sharings.
eldeally:m=n—t @ [Requirements on M?]

Def.: Afunction f:F" — F™ (z1,...,2n) > (Y1,--->Ym)
is hyper-invertible iff for any £ < n inputs z; and any n — k outputs
y; all other inputs and outputs are uniquely defined.

Example: f : F> — F3 is hyper-invertible, then there exist
o f1: (x1,22,23,24,y1) = (25,92,¥3),
o f2:(x1,23,25,92,93) = (22, 24,91),
o f3:(x1,22,91,92,93) > (23,24,25),

Def.: A matrix M over F is hyper-invertible iff every

DX x X
.o . « . - X - - X X
non-trivial square sub-matrix of M is invertible. { X .o x x}

Lemma: Let M be an m-by-n matrix over F and f be the induced linear
function f : F* — F"™. Then, f is hyper-invertible iff M is hyper-invertible.

Linear Hyper-Invertible Function — Construction |

Linear Hyper-Invertible Function — Construction Il 8

g:F"— F" (21,...,2n) = (Y1, ..,ym), linear & hyper-invertible

Given: Points (a1, 1), ..., (an,).

Wanted: y1, ..., ym, St. (B1,91)s - -, (Bm, ym) on same polynomial.

A little bit of Lagrange
oy [1ifi=j
e Reminder: \;(x) is polynomial with \;(a;) = { 0 otherwise
e g(z) = (z)x1+ Xa(z)zo+ ... + () 200
o y1 = A1 (B1)-z1 + A2(B1)-22+ ... + A(B1)-xn (a weighted sum!)

o yo = A1(B2)-x1 + A2(B2)- 22 + ... + An(B2)-zn (a weighted sum!)

Y1 mi1 mi2 M1z - My x1
o |¥2| = |m21 m22 ma3 - mon , where m;; = X;(5;)
Ym Mml Mm2 Mm3 - Mmn] |Tn
Passive Adversaries — Generate Random Sharings Il 9 Passive Adversaries — Generate Random Double-Sharings 10

Generate Random Sharings
1. VP;: chose random s;, share s; with degree t — [s;]¢.

2. All: [r1] [s1]
L '

]

[sn]

i.e., each P; applies HIM on his respective shares.
3. Output n — ¢t sharings [r1],. .., [rn—¢].

2[i

Analysis
1. Adversary corrupts parties B with | B| = ¢ and chooses {[s;]};cp-
2. Consider mapping f : {[si]}iﬂ; — {[rjl};

3. f is bijective! Given {[s;]};ep and {[r;]};, can compute {[si]}i¢B.

4. Outputs {[r;]}; is bijective function from good inputs {[Si]}i¢B-
Adversary can choose bijection ;-)

Generate Random Double-Sharings

1. VP;: chose random s;, share s; with degree ¢ — [s;]¢, and
share s; with degree 2t — [s;]2;

2. All:
[r1le2e [s1]t.2t
[: } = HIM } H
[rn—+li, ot [snls ot
i.e., each P; applies HIM on his respective shares.
3. Output n — ¢ double-sharings [r1]; 3¢, - - -, [rn—tl¢,2¢-
Analysis

e Bijection from “good” inputs {[Si]trgt}igB onto outputs {[r;]¢2¢};-
e Double-sharing property “survives” HIM.

Communication: O(n?2) fe for n—¢ double sharings,
amortized O(n) fe per double sharing. ©

Passive Adversaries — Summary

Model: ¢t < n/2, passive, perfect security.
Preparation: Generate enough random double-sharings [7]; o¢, . . -

MPC Protocol

e Input: P; wants to input s
1. P;: secret-share s — [s]

e Addition / Linear gates: [c] = f([a], [0],...)
1. VP ¢c; = f(aj, by, ..).

e Multiplication: [c] = [a] - [b]
1. pick random double-sharing [r]; o;.
2. VP;: compute e; = a; - b; — [e]os-
3. Compute and publicly-reconstruct [s]o; = [e]o; — [r]o¢-
4. [ce=[rle+s.

e Output: P; shall receive output [s]
1. Reconstruct [s] towards P,.

Communication: O(n) fe per input/multiplication/output. ©

