
Cryptographic Protocols

Spring 2021

MPC Part 4 (shortened)

MPC Protocols — Communication Complexities 2

Notation: n parties, m multiplications, “fe” = field element.

Passive i.t., t < n/2

Share O(n) fe
Mult O(n) Share = O(n2) fe

Active crypto., t < n/2 i.t., t < n/3

Broadcast O(n4) [not seen] O(n2) [seen: O(n3)]
Commit 1 Broadcast = O(n4) fe O(n2) Broadcast = O(n4) fe
Share O(n) Commit = O(n5) fe
Mult O(n) Share = O(n6) fe

Example: n = 100, 1fe = 32 bit, m = 106 multiplications.

Passive: ca. 40 Gigabyte / Active: ca. 4000 Petabyte of communication.

Today: Active, i.t., 400 Megabyte of communication. (1010 x faster!).

Passive Adversaries – Share and Reconstruct 3

Goal: Everything linear (i.e., O(n) fe per operation)

Share – Dealer Pi shares secret s with degree d
• ∀Pj: Pi sends share sj on degree-d polynomial to Pj. Assumption:

• Communication: O(n) fe. ,
Reconstruction – Reconstruct sharing [s] towards Pj
• ∀Pi: send si to Pj; Pj interpolates s (degree d).

Assumption:

• Communication: O(n) fe. ,
Public Reconstruction – Reconstruct sharing [s] to all
• 1) ∀Pi: send si to P1; 2) P1 interpolates s and sends it to ∀Pj.

Assumption:• Communication: O(n) fe. ,

Passive Adversaries – The Multiplication 4

Notation
• [s]d – a sharing of s with degree d.

• [s]d,d′ – two (independent) sharings of (same) s with degrees d and d′.

Idea: Assume [r]t,2t for random r is given – random double-sharing.

Multiplication – Sharings [a]t, [b]t, [r]t,2t→ Product [c]t
1. ∀Pi: compute ei = ai · bi→ [e]2t.

2. Compute and reconstruct to all [s]2t = [e]2t − [r]2t.
Assumption:

3. Compute [c]t = [r]t+ s (locally).

⇒ Communication: 1 Public Reconstruction = O(n) fe. ,
New Problem: Generate random double-sharings, efficiently!

Step 1: Generate random sharings (communication: O(n) fe).
Step 2: Generate random double-sharings (same costs).

Passive Adversaries – Generate Random Sharings I 5

Approach 1 (sum of sharings)

• Protocol: Every Pi shares random si, let [r]=[s1]+...+[sn].

• Communication: O(n2). /
Approach 2 (use less sharings)

• Protocol: Only P1, ..., Pt+1 share random si, let [r]=[s1]+...+[st+1].

• Communication: O(nt), for t ≈ n/2, this is O(n2). /
Approach 3 (extract multiple values)

• Protocol: Every Pi shares random si, let
[r1] = 3[s1] + 2[s2] + . . .+4[sn]
[r2] = 1[s1] + 8[s2] + . . .+1[sn]
[r3] = 7[s1] + . . .

[r1]...
[rm]

 =

 M

[s1]
[s2]...
[sn]

• Communication: O(n2), but for m random sharings.

• Ideally: m = n− t. , Requirements on M?

Hyper-Invertible Functions and Matrices 6

Def.: A function f : Fn→ Fm, (x1, . . . , xn) 7→ (y1, . . . , ym)
is hyper-invertible iff for any k ≤ n inputs xi and any n− k outputs
yj, all other inputs and outputs are uniquely defined.

Example: f : F5→ F3 is hyper-invertible, then there exist

• f1 : (x1, x2, x3, x4, y1) 7→ (x5, y2, y3),
• f2 : (x1, x3, x5, y2, y3) 7→ (x2, x4, y1),
• f3 : (x1, x2, y1, y2, y3) 7→ (x3, x4, x5),
• . . .

Def.: A matrix M over F is hyper-invertible iff every
non-trivial square sub-matrix of M is invertible.

· × · · × ×
· · · · · ·
· × · · × ×
· × · · × ×

Lemma: Let M be an m-by-n matrix over F and f be the induced linear

function f : Fn→ Fm. Then, f is hyper-invertible iff M is hyper-invertible.

Linear Hyper-Invertible Function – Construction I 7

g : Fn→ Fm, (x1, . . . , xn) 7→ (y1, . . . , ym), linear & hyper-invertible

Linear Hyper-Invertible Function – Construction II 8

Given: Points (α1, x1), . . . , (αn, xn).

Wanted: y1, . . . , ym, s.t. (β1, y1), . . . , (βm, ym) on same polynomial.

A little bit of Lagrange

• Reminder: λj(x) is polynomial with λj(αi) =

1 if i = j
0 otherwise

• g(x) = λ1(x)·x1 + λ2(x)·x2 + . . .+ λn(x)·xn.

• y1 = λ1(β1)·x1 + λ2(β1)·x2 + . . .+ λn(β1)·xn (a weighted sum!)

• y2 = λ1(β2)·x1 + λ2(β2)·x2 + . . .+ λn(β2)·xn (a weighted sum!)

•

y1
y2...
ym

 =

m11 m12 m13 · · · m1n
m21 m22 m23 · · · m2n...
mm1 mm2 mm3 · · · mmn

x1...
xn

, where mij = λj(βi)

Passive Adversaries – Generate Random Sharings II 9

Generate Random Sharings
1. ∀Pi: chose random si, share si with degree t→ [si]t.

2. All:

[r1]
...

[rn−t]

 =

 HIM

[s1]...
[sn]

i.e., each Pi applies HIM on his respective shares.

3. Output n− t sharings [r1], . . . , [rn−t].

Analysis
1. Adversary corrupts parties B with |B| = t and chooses {[si]}i∈B.

2. Consider mapping f : {[si]}i/∈B → {[rj]}j.
3. f is bijective! Given {[si]}i∈B and {[rj]}j, can compute {[si]}i/∈B.

4. Outputs {[rj]}j is bijective function from good inputs {[si]}i/∈B.

Adversary can choose bijection ;–)

Passive Adversaries – Generate Random Double-Sharings 10

Generate Random Double-Sharings
1. ∀Pi: chose random si, share si with degree t→ [si]t, and

share si with degree 2t→ [si]2t
2. All:

[r1]t,2t
...

[rn−t]t,2t

 =

 HIM

[s1]t,2t...
[sn]t,2t

i.e., each Pi applies HIM on his respective shares.

3. Output n− t double-sharings [r1]t,2t, . . . , [rn−t]t,2t.

Analysis
• Bijection from “good” inputs {[si]t,2t}i/∈B onto outputs {[rj]t,2t}j.
• Double-sharing property “survives” HIM.

Communication: O(n2) fe for n−t double sharings,
amortized O(n) fe per double sharing. ,

Passive Adversaries – Summary 11

Model: t < n/2, passive, perfect security.

Preparation: Generate enough random double-sharings [r]t,2t, . . .

MPC Protocol
• Input: Pi wants to input s

1. Pi: secret-share s→ [s]

• Addition / Linear gates: [c] = f([a], [b], . . .)
1. ∀Pi: ci = f(ai, bi, . . .).

• Multiplication: [c] = [a] · [b]
1. pick random double-sharing [r]t,2t.
2. ∀Pi: compute ei = ai · bi→ [e]2t.
3. Compute and publicly-reconstruct [s]2t = [e]2t − [r]2t.
4. [c]t = [r]t+ s.

• Output: Pi shall receive output [s]
1. Reconstruct [s] towards Pi.

Communication: O(n) fe per input/multiplication/output. ,

