
Cryptographic Protocols

Spring 2021

MPC Part 2

MPC with an Active Adversary 2

Model
• Active adversary, corrupted parties can deviate from the protocol.

• For now: unbounded computation power, t < n/2.

• Synchronous, secure channels.

• Broadcast.

Corruption Levels
0. Passive corruption (adversary can read internal state).

1. Level 0 + corrupted parties send additional messages.

2. Level 1 + corrupted parties withhold messages.

3. Level 2 + corrupted parties send wrong messages (= active adversary).

Passive Protocol / Adv. can send additional Messages 3

Share input
0. Pi has input s.
1. Pi: select r1, ..., rt at random.

2. Pi: comp.
(s1...
sn

)
= A



s
r1...
rt


.

3. Pi: send sj to every Pj.

Reconstruct Output
0. a is shared by a1, ..., an.
1. ∀Pj: send aj to Pi.
2. Pi: comp. a = L(a1, ..., an).

Addition and Linear Functions f
0. a, b, . . . are shared by a1, ..., an, b1, ..., bn, etc.

1. ∀Pi: compute ci = f(ai, bi, . . .).

Multiplication
0. a, b are shared by a1, ..., an, b1, ..., bn.

1. ∀Pi: compute di = aibi.

2. ∀Pi: share di → di1, . . . , din.

3. ∀Pj: compute cj = L(d1j, . . . , dnj).

Additional Messages:

Passive Protocol / Adv. can withhold Messages 4

Share input
0. Pi has input s.
1. Pi: select r1, ..., rt at random.

2. Pi: comp.
(s1...
sn

)
= A



s
r1...
rt


.

3. Pi: send sj to every Pj.

Reconstruct Output
0. a is shared by a1, ..., an.
1. ∀Pj: send aj to Pi.
2. Pi: comp. a = L(a1, ..., an).

Addition and Linear Functions f
0. a, b, . . . are shared by a1, ..., an, b1, ..., bn, etc.

1. ∀Pi: compute ci = f(ai, bi, . . .).

Multiplication
0. a, b are shared by a1, ..., an, b1, ..., bn.

1. ∀Pi: compute di = aibi.

2. ∀Pi: share di → di1, . . . , din.

3. ∀Pj: compute cj = L(d1j, . . . , dnj).

Withholding Messages:
Case 1:

Case 2:

Case 3:

Passive Protocol / Adv. can send wrong Messages 5

Share input
0. Pi has input s.
1. Pi: select r1, ..., rt at random.

2. Pi: comp.
(s1...
sn

)
= A



s
r1...
rt


.

3. Pi: send sj to every Pj.

Reconstruct Output
0. a is shared by a1, ..., an.
1. ∀Pj: send aj to Pi.
2. Pi: comp. a = L(a1, ..., an).

Addition and Linear Functions f
0. a, b, . . . are shared by a1, ..., an, b1, ..., bn, etc.

1. ∀Pi: compute ci = f(ai, bi, . . .).

Multiplication
0. a, b are shared by a1, ..., an, b1, ..., bn.

1. ∀Pi: compute di = aibi.

2. ∀Pi: share di → di1, . . . , din.

3. ∀Pj: compute cj = L(d1j, . . . , dnj).

Idea:

MPC with an Active Adversary – Commitment Scheme 6

Commitment Scheme
• Protocol COMMIT: Pi can commit to a value a.

• Protocol OPEN: Pi can open a (to all parties).

• Binding (Pi cannot open wrong value a′ 6= a).

• Hiding (adversary learns nothing about committed value a).

• Homomorphic: Pi is committed to a and b⇒ Pi is committed to a+ b.

• Protocol CTP (Commitment Transfer Protocol):
Pi is committed to a, can transfer commitment to Pj.

• Protocol CMP (Commitment Multiplication Proof):
Pi is committed to a, b, and c, can prove that c = a · b.

Macro: Protocol CSP (Commitment Sharing Protocol):
Pi is committed to a⇒ a is shared, parties are committed to shares.

MPC with an Active Adversary – Generic Protocol for t < n/2 7

Share input
0. Pi has input s.
1. Pi: select r1, ..., rt at random.

2. Pi: comp.
(s1...
sn

)
= A



s
r1...
rt


.

3. Pi: send sj to every Pj.

Reconstruct Output
0. a is shared by a1, ..., an.
1. ∀Pj: send aj to Pi.
2. Pi: comp. a = L(a1, ..., an).

Addition and Linear Functions f
0. a, b, . . . are shared by a1, ..., an, b1, ..., bn, etc.

1. ∀Pi: compute ci = f(ai, bi, . . .).

Multiplication
0. a, b are shared by a1, ..., an, b1, ..., bn.

1. ∀Pi: compute di = aibi.

2. ∀Pi: share di → di1, . . . , din.

3. ∀Pj: compute cj = L(d1j, . . . , dnj).

Prerequisite:

MPC Active – Cryptographic Security 8

Model
• Active adversary

• Adversary is computationally bounded

• t < n/2

Goal
• Homomorphic Commitment Scheme with CTP and CMP

Type B vs. Type H
• Type B: perfect correctness, computational secrecy

• Type H: perfect secrecy, computational correctness?

• Everlasting Security

Recap: Commitment Schemes – Definition 9

Intuition
• Peggy P commits to a value x towards Vic V .

• Peggy can open x if she wants to.

Attempt 1: Hash function h, send h(x) to COMMIT, send x to OPEN.

Definition: A commitment scheme is a pair of protocols (COMMIT,OPEN),

where Peggy inputs x in COMMIT and Vic outputs x′ in OPEN, s.t.

• Binding: After COMMIT, the value x is fixed.

• Hiding: In COMMIT, Vic does not learn x.

• Correctness: If Vic is honest, then x′ ∈ {x,⊥}.
If both are honest, then x′ = x.

Attempt 2: Random r, send h(r‖x) to COMMIT, send (x, r) to OPEN.

Recap: Commitment Schemes – Types 10

Non-interactive Commitment Scheme
• Function C : (x, r)→ b.

• COMMIT: Peggy computes and sends b = C(x, r) (the blob).

• OPEN: Peggy sends (x, r), Vic checks that b ?
= C(x, r).

Type B
• Perfect Binding (even unbounded Peggy cannot open x′ 6= x).

• (At least) computational Hiding.

Type H
• Perfect Hiding (even unbounded Vic obtains no information about x).

• (At least) computational Binding.

Lemma: Simultaneously Type B and Type H is not possible.

Recap: Pedersen Commitment Scheme 11

Setting
• Cyclic group H of prime order q = |H|.
• Generators g and h, i.e., H = 〈g〉 = 〈h〉, DLg(h) unknown.

Commitment
• Value x ∈ Zq, random value r ∈R Zq.
• C(x, r) = gxhr.

Analysis
• Perfect hiding: r ∈R Zq ⇒ hr ∈R H ⇒ gxhr ∈R H.

• Comp. binding: given gxhr = gx
′
hr
′ → can compute DLg(h).

Trapdoor Commitment Scheme
• If Vic knows Trapdoor T = DLg(h), he can open both ways.

• Relevant in some zero-knowledge proofs.

ElGamal Commitment Scheme 12

Setting
• Cyclic group H of prime order q = |H|.
• Generators g and h, i.e., H = 〈g〉 = 〈h〉, DLg(h) unknown.

Commitment
• Value x ∈ Zq, random value r ∈R Zq.
• C(x, r) = (gr, gxhr).

Analysis
• → exercise

Homomorphic Commitment Schemes 13

Informally
• Homomorphic⇒ can “add” blobs, results in blob for the sum.

Definition
• A commitment scheme is homomorphic if

C(x, r)⊗ C(x′, r′) = C(x⊕ x′, r ⊕ r′).

Examples
• Pedersen: gxhr · gx′hr′ = gx+x

′
hr+r

′
.

• ElGamal:→ exercise

Multi-Party Commitment Schemes 14

Informally
• Pi commits to a value x towards all parties.

• Pi can open x if she wants.

• Either all (honest) parties accept x, or all (honest) parties reject.

Multi-Party Commitments from Non-Interactive Commitments
• Given non-interactive commitment scheme C.

• COMMIT: Compute b = C(x, r), broadcast b.

• OPEN: Broadcast (x, r), every Pj accepts x iff b ?
= C(x, r).

CMP for Pedersen Commitments 15

Given: Commitments A = gahα, B = gbhβ, C = gchγ

Assume: Peggy knows a, b, c, α, β, γ such that c = a · b
Goal: Prove that c = a · b
Idea: • Ba is some commitment to ab

• Prove knowledge of a such that
i) a “is contained in” A ii) Ba and C “contain” same value

Sketch: Prove knowledge of a, α, ξ s.t. A = gahα and C = Ba · g0hξ

Proof
• Define fB : Z3

q 7→ H2, (a, α, ξ)→ (gahα, Ba · g0hξ)
• Observe: fB is a group homomorphism!

• Proof knowledge of a pre-image of (A,C) w.r.t. fB
• Note: (a, α, γ−aβ) is such a pre-image . . .

MPC Active – Cryptographic Security 16

Model: Active, crypto, t < n/2

The Protocol
• Use generic protocol . . .

. . . with a non-interactive, homomorphic Commitment Scheme C(a, α).

• COMMIT, OPEN via broadcast.

• CTP obvious.

• CMP: see previous slide (Pedersen) / exercise (ElGamal), . . .

. . . challenge as a (linear) MPC, proof via broadcast.

MPC Active – Impossibility 17

Two Parties (n = 2, t = 1)

Alice Bob
Input a Input b

-m1

�m2

· · · · · ·
-m`

Output c = ab Output c = ab

n Parties (n, t ≥ n/2)

P4

P1

P8

P5
P6

P7

P2

P3

Alice

Bob

Analysis
• Consider shortest secure protocol. Hence, m1, . . . ,m`−1 is not secure!

• Corrupted Alice can drop last message.

• If ` is unknown (but poly-bounded): adversary can guess `.

