

Spring 2021

MPC Part 2

MPC with an Active Adversary

Model

• Active adversary, corrupted parties can deviate from the protocol.

2

- For now: unbounded computation power, t < n/2.
- Synchronous, secure channels.
- Broadcast.

Corruption Levels

- 0. Passive corruption (adversary can read internal state).
- 1. Level 0 + corrupted parties send additional messages.
- 2. Level 1 + corrupted parties withhold messages.
- 3. Level 2 + corrupted parties send wrong messages (= active adversary).

Passive Protocol / Adv. can send wror	ng Messages	5
Share input	Reconstruct Output	
0. P_i has input s.	0. a is shared by a_1, \ldots, a_n .	
1. P_i : select $r_1,, r_t$ at random.	1. $\forall P_j$: send a_j to P_i .	
2. P_i : comp. $\begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} = A \begin{pmatrix} s \\ r_1 \\ \vdots \\ \vdots \\ t \end{pmatrix}$.	2. P_i : comp. $a = \mathcal{L}(a_1,, a_n)$.	
3. P_i : send s_j to every P_j .		
Addition and Linear Functions f		
0. $a, b,$ are shared by $a_1,, a_n, b_1,, b_n$, etc.		
1. $\forall P_i$: compute $c_i = f(a_i, b_i, \ldots)$.	Idea:	٦
Multiplication		
0. a, b are shared by $a_1,, a_n, b_1,, b_n$	<i>n</i> •	
1. $\forall P_i$: compute $d_i = a_i b_i$.		
2. $\forall P_i$: share $d_i \rightarrow d_{i1}, \ldots, d_{in}$.		
3. $\forall P_j$: compute $c_j = \mathcal{L}(d_{1j}, \ldots, d_{nj})$.		

MPC with an Active Adversary – Commitment Scheme	6
Commitment Scheme	
• Protocol COMMIT: P _i can commit to a value a.	
• Protocol OPEN: P_i can open a (to all parties).	
• Binding (P_i cannot open wrong value $a' \neq a$).	
• Hiding (adversary learns nothing about committed value <i>a</i>).	
- Homomorphic: P_i is committed to a and $b \Rightarrow P_i$ is committed to a +	b.
 Protocol CTP (Commitment Transfer Protocol): <i>P_i</i> is committed to <i>a</i>, can transfer commitment to <i>P_j</i>. 	
• Protocol CMP (Commitment Multiplication Proof): P_i is committed to a, b , and c , can prove that $c = a \cdot b$.	
Macro: Protocol CSP (Commitment Sharing Protocol): P_i is committed to $a \Rightarrow a$ is shared, parties are committed to shares.	

MPC with an Active Adversary – Generic Protocol for $t < n/2$ 7		
Share input	Reconstruct Output	
0. P_i has input s.	0. a is shared by a_1, \ldots, a_n .	
1. P_i : select $r_1,, r_t$ at random.	1. $\forall P_j$: send a_j to P_i .	
2. P_i : comp. $\begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} = A \begin{pmatrix} s \\ r_1 \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}$.	2. P_i : comp. $a = \mathcal{L}(a_1,, a_n)$.	
3. P_i : send s_j to every P_j .		
Addition and Linear Functions f		
0. $a, b,$ are shared by $a_1,, a_n, b_1,, b_n$, etc.		
1. $\forall P_i$: compute $c_i = f(a_i, b_i, \ldots)$.	Prerequisite:	
Multiplication		
0. a, b are shared by $a_1,, a_n, b_1,, b_n$	n.	
1. $\forall P_i$: compute $d_i = a_i b_i$.		
2. $\forall P_i$: share $d_i \rightarrow d_{i1}, \ldots, d_{in}$.		
3. $\forall P_j$: compute $c_j = \mathcal{L}(d_{1j}, \ldots, d_{nj})$.		

MPC Active – Cryptographic Security

Model

- Active adversary
- Adversary is computationally bounded
- t < n/2

Goal

• Homomorphic Commitment Scheme with CTP and CMP

8

12

Type B vs. Type H

- Type B: perfect correctness, computational secrecy
- Type H: perfect secrecy, computational correctness?
- Everlasting Security

Recap: Commitment Schemes – Definition 9	Recap: Commitment Schemes – Types 10
Intuition• Peggy P commits to a value x towards Vic V.• Peggy can open x if she wants to.Attempt 1: Hash function h, send $h(x)$ to COMMIT, send x to OPEN.Definition: A commitment scheme is a pair of protocols (COMMIT, OPEN), where Peggy inputs x in COMMIT and Vic outputs x' in OPEN, s.t.• Binding: After COMMIT, the value x is fixed.• Hiding: In COMMIT, Vic does not learn x.• Correctness: If Vic is honest, then $x' \in \{x, \bot\}$. If both are honest, then $x' = x$.Attempt 2: Random r, send $h(r x)$ to COMMIT, send (x, r) to OPEN.	Non-interactive Commitment Scheme• Function $C : (x, r) \rightarrow b$.• COMMIT: Peggy computes and sends $b = C(x, r)$ (the blob).• OPEN: Peggy sends (x, r) , Vic checks that $b \stackrel{?}{=} C(x, r)$.Type B• Perfect Binding (even unbounded Peggy cannot open $x' \neq x$).• (At least) computational Hiding.Type H• Perfect Hiding (even unbounded Vic obtains no information about x).• (At least) computational Binding.Lemma: Simultaneously Type B and Type H is not possible.

11

Recap: Pedersen Commitment Scheme

Setting

- Cyclic group H of prime order q = |H|.
- Generators g and h, i.e., $H = \langle g \rangle = \langle h \rangle$, $\mathsf{DL}_g(h)$ unknown.

Commitment

- Value $x \in \mathbb{Z}_q$, random value $r \in_R \mathbb{Z}_q$.
- $C(x,r) = g^x h^r$.

Analysis

- Perfect hiding: $r \in_R \mathbb{Z}_q \Rightarrow h^r \in_R H \Rightarrow g^x h^r \in_R H.$
- Comp. binding: given $g^{x}h^{r} = g^{x'}h^{r'} \rightarrow \text{can compute } \mathsf{DL}_{g}(h)$.

Trapdoor Commitment Scheme

- If Vic knows Trapdoor $T = DL_g(h)$, he can open both ways.
- Relevant in some zero-knowledge proofs.

ElGamal Commitment Scheme

Setting

- Cyclic group *H* of prime order q = |H|.
- Generators g and h, i.e., $H = \langle g \rangle = \langle h \rangle$, $\mathsf{DL}_g(h)$ unknown.

Commitment

- Value $x \in \mathbb{Z}_q$, random value $r \in_R \mathbb{Z}_q$.
- $C(x,r) = (g^r, g^x h^r).$

Analysis

 $\bullet \ \rightarrow \text{exercise}$

Homomorphic Commitment Schemes

13

Informally

 $\bullet\,$ Homomorphic \Rightarrow can "add" blobs, results in blob for the sum.

Definition

• A commitment scheme is homomorphic if $C(x,r) \otimes C(x',r') = C(x \oplus x',r \oplus r').$

Examples

- Pedersen: $g^{x}h^{r} \cdot g^{x'}h^{r'} = g^{x+x'}h^{r+r'}$.
- $\bullet \ \text{ElGamal:} \rightarrow \text{exercise}$

Multi-Party Commitment Schemes

Informally

- P_i commits to a value x towards all parties.
- P_i can open x if she wants.
- Either all (honest) parties accept x, or all (honest) parties reject.

14

16

Multi-Party Commitments from Non-Interactive Commitments

- Given non-interactive commitment scheme C.
- COMMIT: Compute b = C(x, r), broadcast b.
- OPEN: Broadcast (x, r), every P_j accepts x iff $b \stackrel{?}{=} C(x, r)$.

CMP for Pedersen Commitments 15
Given: Commitments $A = g^a h^{lpha}, B = g^b h^{eta}, C = g^c h^{\gamma}$
Assume: Peggy knows $a, b, c, \alpha, \beta, \gamma$ such that $c = a \cdot b$
Goal: Prove that $c = a \cdot b$
 B^a is some commitment to ab Prove knowledge of a such that i) a "is contained in" A ii) B^a and C "contain" same value
Sketch: Prove knowledge of a, α, ξ s.t. $A = g^a h^{\alpha}$ and $C = B^a \cdot g^0 h^{\xi}$
Proof • Define $f_B : Z_q^3 \mapsto H^2, (a, \alpha, \xi) \to (g^a h^\alpha, B^a \cdot g^0 h^\xi)$

- Observe: f_B is a group homomorphism!
- Proof knowledge of a pre-image of $({\cal A},{\cal C})$ w.r.t. $f_{\cal B}$
- Note: $(a, \alpha, \gamma a\beta)$ is such a pre-image ...

MPC Active – Cryptographic Security

Model: Active, crypto, t < n/2

The Protocol

- Use generic protocol ...
- ... with a non-interactive, homomorphic Commitment Scheme $C(a, \alpha)$. • COMMIT, OPEN via broadcast.
- CTP obvious.
- CMP: see previous slide (Pedersen) / exercise (ElGamal), ...
- ... challenge as a (linear) MPC, proof via broadcast.

- Corrupted Alice can drop last message.
- If ℓ is unknown (but poly-bounded): adversary can guess $\ell.$