Cryptographic Protocols
Spring 2021

MPC Part 2

MPC with an Active Adversary 2

Model
e Active adversary, corrupted parties can deviate from the protocol.
e For now: unbounded computation power, ¢ < n/2.
e Synchronous, secure channels.
e Broadcast.

Corruption Levels

0. Passive corruption (adversary can read internal state).

1. Level 0 + corrupted parties send additional messages.

2. Level 1 + corrupted parties withhold messages.

3. Level 2 + corrupted parties send wrong messages (= active adversary).

Passive Protocol / Adv. can send additional Messages

Passive Protocol / Adv. can withhold Messages 4

Share input
0. P; has input s.
1. P;:selectry, ..., r¢ at random.

S1 Ts
2. Pz-:comp.<sgn>=A RE
Tt

3. P;:send s; to every Pj.

Reconstruct Output
0. ais shared by aq, ..., an.
1. VP;:send a; to P;.

Addition and Linear Functions f
0. a,b,...are shared by ay, ..., an, b1, ..., bn, etc.

2. P;icomp.a = L(aq,...,an).

Share input
0. P; has input s.
1. P;: select ry, ..., r¢ at random.

81 Ts
2. P;: comp. (Sn> =A("})
Tt

3. P;:send s; to every P;.

Reconstruct Output

0. ais shared by aq, ..., an.

1. VP;:send a; to ;.

2. P;:comp. a = L(ay,...,an).

Addition and Linear Functions f
0. a,b,...are shared by aq, ...,an, b, ..., bn, €tc.

1. VP;: compute ¢; = f(aj, by, .. .). Additional Messages: 1. VP;: compute ¢; = f(aj, by, ...). Withholding Messages:
Multiplication Multiplication Case 1:

0. a, b are shared by a1, ..., an, b1, ..., bn. 0. a, bare shared by a1, ...,an, b1,.cosbn. | ..
1. VP;: compute d; = a;b;. 1. VP;: compute d; = a;b;. Case 2

2. VP;:shared; — diy, ..., dip. 2. VP;shared; — d;y,...,dp. Gicag
3. VP;: compute ¢; = L(dyj,- - - ,dpj)- 3. VPj: compute ¢; = L(dy;, - - -, dpj)-

Passive Protocol / Adv. can send wrong Messages MPC with an Active Adversary — Commitment Scheme 6

Share input
0. P; has input s.
1. P;:selectry, ..., r¢ at random.

Reconstruct Output
0. ais shared by aq, ..., an.
1. VP;:send a; to P;.

S
2. P comp. (551) — 4 (1) 2. P;:comp.a = L(aq,...,an).

Sn
3. P;:send s; to every Pj.

Tt

Addition and Linear Functions f
0. a,b,...areshared by ay,...,an, b1, ..., bn, €tc.

1. VP;: compute ¢; = f(a;, bj, .. .). Idea:
Multiplication

0. a, b are shared by a1, ..., an, b1, ..., bn.
1. VP;: compute d; = a;b;.

2. VP;:share d; — d;1,...,dip.

3. VP;: compute ¢; = L(dyj,- - - ,dpj)-

Commitment Scheme
e Protocol COMMIT: P; can commit to a value a.

e Protocol OPEN: P; can open « (to all parties).

e Binding (P; cannot open wrong value a’ # a).

e Hiding (adversary learns nothing about committed value a).

e Homomorphic: P; is committed to a and b = P; is committed to a + b.

e Protocol CTP (Commitment Transfer Protocol):
P; is committed to a, can transfer commitment to P;.

e Protocol CMP (Commitment Multiplication Proof):
P; is committed to a, b, and ¢, can prove thatc = a - b.

Macro: Protocol CSP (Commitment Sharing Protocol):
P; is committed to a = a is shared, parties are committed to shares.

MPC with an Active Adversary — Generic Protocol for t < n/2 7

MPC Active — Cryptographic Security 8

Reconstruct Output
0. P; has input s. 0. ais shared by a1, ..., an.
1. P;:selectrq, ..., at random. 1. VP;:send a; to P;.

S
YL Y
n

3. P;:send s; to every P;.

Share input

7y

Addition and Linear Functions f
0. a,b,...are shared by aq,...,an, b1, ..., bn, etc.

1. VP;: compute ¢; = f(a;, by, - - .). Prerequisite:
Multiplication

0. a, bare shared by a1, ...,an, b1, ..., bn.
1. VP;: compute d; = a;b;.

2. VP;:shared;, — d;1,...,din.

3. VPj: compute c; = L(dyj, -, dp;)-

Model
e Active adversary
e Adversary is computationally bounded
e t<n/2

Goal
e Homomorphic Commitment Scheme with CTP and CMP

Type B vs. Type H
e Type B: perfect correctness, computational secrecy
o Type H: perfect secrecy, computational correctness?
e Everlasting Security

Recap: Commitment Schemes — Definition 9

Recap: Commitment Schemes — Types 10

Intuition
e Peggy P commits to a value z towards Vic V.
e Peggy can open z if she wants to.

Attempt 1: Hash function h, send h(x) to COMMIT, send z to OPEN.

Definition: A commitment scheme is a pair of protocols (COMMIT, OPEN),
where Peggy inputs « in CoMMIT and Vic outputs z’ in OPEN, s.t.
e Binding: After ComMIT, the value z is fixed.
e Hiding: In CoMMIT, Vic does not learn z.
e Correctness: If Vic is honest, then o’ € {z, L}.
If both are honest, then 2’ = z.

Attempt 2: Random r, send h(r||z) to COMMIT, send (z,) to OPEN.

Non-interactive Commitment Scheme
e Function C : (z,7) — b.
e COMMIT: Peggy computes and sends b = C(z,) (the blob).
e OPEN: Peggy sends (x,r), Vic checks that b < C(z,7).

Type B
e Perfect Binding (even unbounded Peggy cannot open z’ # z).
o (At least) computational Hiding.

Type H
e Perfect Hiding (even unbounded Vic obtains no information about).
e (At least) computational Binding.

Lemma: Simultaneously Type B and Type H is not possible.

Recap: Pedersen Commitment Scheme 1

ElGamal Commitment Scheme 12

Setting
e Cyclic group H of prime order ¢ = |H|.
e Generators g and h, i.e., H = (g) = (h), DLy(h) unknown.

Commitment
e Value = € Zg, random value r € Zq.
e C(z,r) = g*h".

Analysis

e Perfect hiding:r €p Zg = h" €eg H = g¢g"h" €p H.

e Comp. binding: given g*h" = gz/h“ — can compute DLg(h).
Trapdoor Commitment Scheme

o If Vic knows Trapdoor T' = DL4(h), he can open both ways.
e Relevant in some zero-knowledge proofs.

Setting

e Cyclic group H of prime order ¢ = |H|.

e Generators g and h, i.e., H = (g) = (h), DLy(h) unknown.
Commitment

e Value = € Zg, random value r € Zg.
o C(z,m) = (g",9"h").

Analysis
e — exercise

Homomorphic Commitment Schemes 13

Multi-Party Commitment Schemes 14

Informally
e Homomorphic = can “add” blobs, results in blob for the sum.

Definition
e A commitment scheme is homomorphic if
Clz,r)@C@,r)=Clzda’,rdr).

Examples
e Pedersen: g%h” - g7 k" = grta'prtr
e ElGamal: — exercise

Informally
e P; commits to a value = towards all parties.
e P; can open z if she wants.
e Either all (honest) parties accept z, or all (honest) parties reject.

Multi-Party Commitments from Non-Interactive Commitments
e Given non-interactive commitment scheme C.
e CommIT: Compute b = C(z,), broadcast b.
o OPEN: Broadcast (z,r), every P; accepts x iff b < C(z,7).

CMP for Pedersen Commitments 15

MPC Active — Cryptographic Security 16

Given: Commitments A = g°h®, B = gbh®, C = g
Assume: Peggy knows a, b, ¢, «, 3,y suchthatc =a - b
Goal: Prove thatc =a - b

Idea: e B“is some commitment to ab
e Prove knowledge of a such that
i) a “is contained in” A i) B® and C “contain” same value

Sketch: Prove knowledge of a, o, £ s.t. A = g°h® and C = B%- gOh

Proof
o Define f : Z3 — H?, (a,a,£) — (g*h®, B®- gOht)
e Observe: fp is a group homomorphism!
e Proof knowledge of a pre-image of (A, C) w.rt. fp
e Note: (a, a,y—af) is such a pre-image . ..

Model: Active, crypto, t < n/2

The Protocol
e Use generic protocol ...
... with a non-interactive, homomorphic Commitment Scheme C(a,).
e CoMMIT, OPEN via broadcast.
e CTP obvious.
e CMP: see previous slide (Pedersen) / exercise (ElIGamal), ...
...challenge as a (linear) MPC, proof via broadcast.

MPC Active — Impossibility 17
Two Parties (n = 2,t = 1) n Parties (n,t > n/2)
Alice Bob
Input a Input b
my
—
m2
B
my
—
Output ¢ = ab Output ¢ = ab
Analysis
e Consider shortest secure protocol. Hence, m1, ..., my_1 is not secure!

e Corrupted Alice can drop last message.
e If £is unknown (but poly-bounded): adversary can guess /.

