
Cryptographic Protocols

Spring 2021

MPC Part 1

Sum Protocol 2

Goal: Compute sum of inputs

Protocol

random r
y1 = r+x1

y1

y2 = y1+x2

y2

y3 = y2+x3

y3

y4 = y3+x4

y4

y5 = y4+x5

y5

y6 = y5+x6

y6

y7 = y6+x7

y7

s = y7−r

Analysis: 1 passive cheater? 2 passive? 1 active? 2 active?

Specification

0. ∀Pi: input xi

1. ∀Pi: send xi to TTP

2. TTP: y =
∑
xi

3. TTP: send y to ∀Pi

Multi-Party Computation: Goal 3

⇒

Specification Protocol

A protocol is secure if the adversary cannot achieve anything in
the protocol that he could not achieve in the specification.

Intuition: ∀Adv ∃Sim : ProtAdv ∼ SpecSim

Model 4

Parties and Channels
• n parties P1, . . . , Pn

• Secure channels among parties

• Broadcast channels

Adversary
• Central adversary (collaborating parties)

• Corrupts t parties

• Passive vs active

Security
• Information-theoretic vs. Cryptographic

Sum Protocol II 5

Protocol: · · ·

x1 x11 x12 x13 x14 · · · x1n

x2 x21 x22 x23 x24 · · · x2n

x3 x31 x32 x33 x34 · · · x3n

x4 x41 x42 x43 x44 · · · x4n

......
......

xn xn1 xn2 xn3 xn4 · · · xnn

y1 y2 y3 y4 · · · yn y =
n∑

i=1
yi

Analysis: 1 passive cheater? 2 passive? 1 active? 2 active?

More Examples 6

Examples
• Statistics (first sex, tax evading, etc.)

• Elections / Votes / Auctions

• Millionaires problem

• Loans (several banks, same guarantee)

• ZK-proofs (Peggy sends witness to TTP, who checks & sends 0/1 to Vic)

Secure Function Evalutation (evaluate function f on all inputs)

1. ∀Pi: send input xi to TTP

2. TTP: compute (y1, . . . , yn) = f(x1, . . . , xn)

3. TTP: send output yj to ∀Pj
Limitations
• Poker, etc (not realizable with TTP)

Known Results 7

Setting Condition Literature

Cryptographic, passive t < n [GMW87]

Cryptographic, active t < n/2 [GMW87]

Information-theoretic, passive t < n/2 [BGW88,CCD88]

Information-theoretic, active t < n/3 [BGW88,CCD88]

Information-theoretic, active
assuming broadcast

t < n/2 [RB89,Bea91]

Oblivious Transfer 8

Rabin-OT Sender Receiver

−→s
r ∈R {0,1}
−→
r=0: s
r=1: ⊥

1-2-OT Sender Receiver

−→s0, s1
←−b
−→sb

1-k-OT Sender Receiver

−→s1, .., sk ←−i
−→si

1-2-OST based on RSA and AES 9

Sender Receiver

Messages s0, s1 Selector b ∈ {0,1}

Generate RSA-Keys

n0, e0, d0 and n1, e1, d1

with n0 ≈ n1
-n0, e0, n1, e1

� u
k at random,

u = keb (mod nb)

k0 = ud0 (mod n0)

k1 = ud1 (mod n1)

y0 = AESk0
(s0)

y1 = AESk1
(s1) -y0, y1

sb = AES−1
k (yb)

MPC from OT 10

Starting Point
• 2 parties Alice and Bob

• Inputs a ∈ A and b ∈ B
• Fixed function f : A×B → C

Truth table:
a b c

0 0 17
0 1 23
0 2 8
1 0 17
1 1 10
1 2 −4
2 0 . . .
2 1 . . .

Protocol
1. Alice sends [f(a, b1) | f(a, b2) | . . . | f(a, b`)] via OT

2. Bob selects b-th value

3. Bob sends output to Alice

Analysis: • Security
• Efficiency

Extension: 3 parties . . .

Multi-Party Computation: Goal II 11

⇒

Specification Protocol

Multi-Party Computation: Goal II 12

⇒

Trusted party

• Receive input

• ⊕ and ⊗ over finite field F

• Give output

Simulating players . . .

• n players: P={P1, . . . , Pn}
• Players can ⊕ and ⊗ in F

• Players can communicate

Sum Protocol III 13

Protocol:
· · ·

x1 x11 x12 x13 x14 · · · x1n

x2 x21 x22 x23 x24 · · · x2n

x3 x31 x32 x33 x34 · · · x3n

x4 x41 x42 x43 x44 · · · x4n

......
......

xn xn1 xn2 xn3 xn4 · · · xnn

y1 y2 y3 y4 · · · yn y =
n∑

i=1
yi

Analysis: 1 passive cheater? 2 passive? 1 active? 2 active?

Secret-Sharing Schemes – Definition 14

Intuition
• Dealer D can share a secret s among parties P
• Qualified subsets of P can reconstruct s (w/o D)

• Access structure Γ ⊆ 2P

Definition

A secret-sharing scheme for parties P and access structure Γ

is a pair of protocols (SHARE,RECONSTRUCT), s.t.

• Correctness:

1. After SHARE, there is a unique value s′,
where s′ = s (the dealer’s input) if the dealer is honest

2. After RECONSTRUCT(M), if M ∈ Γ, all players in M know s′

• Privacy: After SHARE, non-qualified sets have no information about s

Secret-Sharing Schemes – Examples 15

Example 1
• Parties P
• Γ = {P} (only all parties jointly can reconstruct)

• SHARE: select random x1, . . . , xn with ∑
xi = s, send xi to Pi

• RECONSTRUCT: Obvious

Example 2
• Parties P, arbitrary access structure Γ

• SHARE: ∀Mi ∈ Γ:

– select random {xij}Pj∈Mi
with ∑

j xij = s,

– send xij to Pj ∈Mi

• RECONSTRUCT: Obvious

Shamir’s Secret-Sharing Scheme (1/3) 16

Goal
• n parties, k needed for reconstruction

• Threshold access structure Γ = {M ⊆ P : |M | ≥ k}

Idea
• Random polynomial f of degree d is defined by d+ 1 points

• s = f(0) = secret, party Pi gets share si = f(αi) for fixed αi
• Degree d = k−1 ⇒ k parties can reconstruct, k−1 cannot

α1 α3 αnα2

s1 s2
s3 f (x)

s

sn

Shamir’s Secret-Sharing Scheme (2/3) 17

Starting Point: To each party Pi, some unique αi ∈ F \ {0} is assigned.

SHARE

1. D: choose random f with f(0) = s and deg(f) ≤ d
(i.e., choose random r1, . . . , rd, let f(x) = s+ r1x+ . . .+ rdx

d)

2. D: send si = f(αi) to ∀Pi

RECONSTRUCT

1. ∀Pi: send si to P

2. P : compute s with Lagrange interpolation:

f(x) =
n∑

i=1
λi(x) si, where λi(x) =

n∏

j=1
j 6=i

x− αj
αi − αj

.

hence s =
n∑

i=1
wisi, where wi = λi(0) =

n∏

j=1
j 6=i

−αj
αi − αj

.

Shamir’s Secret-Sharing Scheme (3/3) 18

Analysis for passive adversary:

Correctness
• 1: by inspection, s′ = f(0)

• 2: due to Lagrange interpolation (given |M | ≥ k = d+ 1)

Privacy
• For ≤ d = k−1 shares, every secret s is “compatible” (same #polys)

• ⇒ adversary with < k shares obtains no information about s.

Note
• Degree is at most d, not exactly d

• Otherwise privacy violation

Linear Secret-Sharing Schemes 19

Definition: Secret-Sharing is linear, if each share si = Li(s, r1, . . . , r`):

s1

s2

...

sn

=

A10 A11· · ·A1`

A20 A21· · ·A2`

...

An0 An1· · ·An`

·

s
r1
...
r`

Addition

[s1, . . . , sn] = A · [s, r0, . . . , r`]

[s′1, . . . , s′n] = A · [s′, r′0, . . . , r′`]

[s1 + s′1 , . . . , sn + s′n] = A · [s+ s′, r0 + r′0, . . . , r` + r′`]

Shamir Sharing is linear

A =

1 α1 . . . αd1...
1 αn . . . αdn

 (Van der Monde Matrix)

MPC Passive: Secret-Sharing and Addition 20

Setting
• n parties, t corrupted (passive), t < n/2

Secret Sharing
• Shamir-Sharing with degree t

• ⇒ any t (corrupted) parties do not learn anything

Addition and Linear Functions
• Shamir-Sharing is linear⇒ apply linear function on shares

• a, b, . . . shared by a1, ..., an, b1, ..., bn, etc.

• Every Pi computes ci = L(ai, bi, . . .)

• c1, ..., cn is a sharing of c = L(a, b, . . .)

MPC Passive: Multiplication 21

Starting Point: a, b shared by a1, ..., an, b1, ..., bn

Idea
• Every Pi computes di = ai · bi
• Observe: d1, . . . , dn is some-kind-of sharing of c = a · b
• Could compute c from d1, . . . , dn: c =

n∑

i=1
widi (Lagrange)

• Compute c as MPC: Every Pi has input di, compute (sharing of) c

Multiplication Protocol
1. ∀Pi: compute di = aibi.

2. ∀Pi: share di → di1, . . . , din.

3. ∀Pj: compute cj = w1d1j + . . .+ wndnj.

Passive Protocol 22

Share input
0. Pi has input s.
1. Pi: select r1, ..., rt at random.

2. Pi: comp.
(s1...
sn

)
= A

s
r1...
rt

.

3. Pi: send sj to every Pj.

Reconstruct Output
0. a is shared by a1, ..., an.
1. ∀Pj: send aj to Pi.
2. Pi: comp. a = L(a1, ..., an).

Addition and Linear Functions
0. a, b, . . . are shared by a1, ..., an, b1, ..., bn, etc.

1. ∀Pi: compute ci = L(ai, bi, . . .).

Multiplication
0. a, b are shared by a1, ..., an, b1, ..., bn.

1. ∀Pi: compute di = aibi.

2. ∀Pi: share di → di1, . . . , din.

3. ∀Pj: compute cj = L(d1j, . . . , dnj).

Passive MPC – Impossibility 23

Two Parties (n = 2, t = 1)

Alice Bob
Input a
Random string r

Input b
Random string s-m1

�m2

· · · · · ·
-m`

Output c = ab Output c = ab

n Parties (n, t ≥ n/2)

P4

P1

P8

P5
P6

P7

P2

P3

Analysis
• b = 0: Transcript contains no info about a, i.e. I(T ; a) = 0.

• b = 1: Transcript contains full info about a, i.e. I(T, a) = H(a).

• Alice can check: Is there (a′, r′) s.t. same transcript is produced?
(exhaustive search requires unbounded computing power)

