

More Examples

Examples

- Statistics (first sex, tax evading, etc.)
- Elections / Votes / Auctions
- Millionaires problem
- Loans (several banks, same guarantee)

• ZK-proofs (Peggy sends witness to TTP, who checks & sends 0/1 to Vic)

6

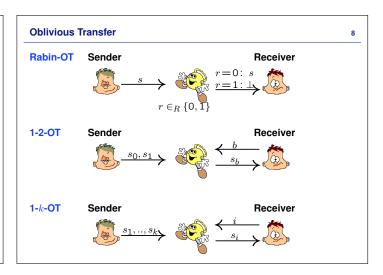
Secure Function Evaluation (evaluate function *f* on all inputs)

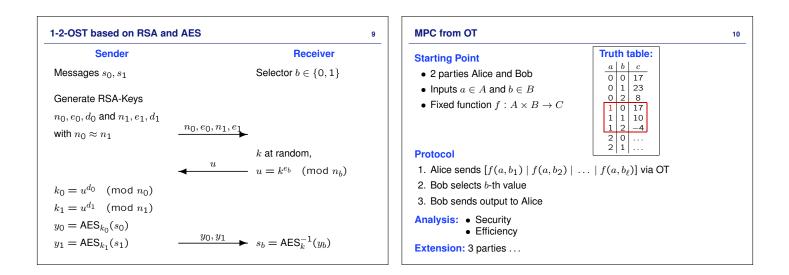
- 1. $\forall P_i$: send input x_i to TTP
- 2. TTP: compute $(y_1, ..., y_n) = f(x_1, ..., x_n)$
- 3. TTP: send output y_j to $\forall P_j$

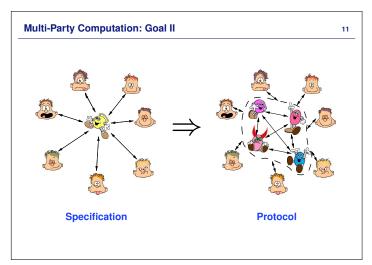
Limitations

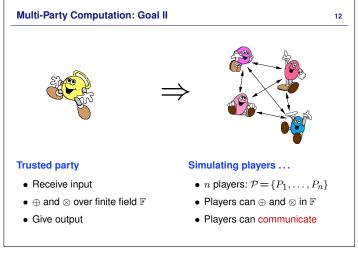
• Poker, etc (not realizable with TTP)

Setting	Condition	Literature
Cryptographic, passive	t < n	[GMW87]
Cryptographic, active	t < n/2	[GMW87]
Information-theoretic, passive	t < n/2	[BGW88,CCD88
Information-theoretic, active	t < n/3	[BGW88,CCD88
Information-theoretic, active assuming broadcast	t < n/2	[RB89,Bea91]









rotocol:			P			
	x ₁₁	x ₁₂	x ₁₃	<i>x</i> ₁₄	 x_{1n}	
x2	x ₂₁	x ₂₂	x ₂₃	<i>x</i> ₂₄	 x_{2n}	
🧔 x ₃	x ₃₁	x ₃₂	x33	x ₃₄	 $x_{\Im n}$	
🧔 x ₄	x ₄₁	<i>x</i> ₄₂	x ₄₃	x44	 x_{4n}	
1 1			1	l		
$\bigotimes x_n$	x_{n1}	x_{n2}	x_{n3}	x_{n4}	 x_{nn}	
	y_1	y_2	y_3	y_4	 y_n	$y = \sum_{i=1}^{n} y_i$

Secret-Sharing Schemes – Definition

Intuition

- Dealer D can share a secret s among parties \mathcal{P}
- Qualified subsets of \mathcal{P} can reconstruct s (w/o D)
- Access structure $\Gamma \subseteq 2^{\mathcal{P}}$

Definition

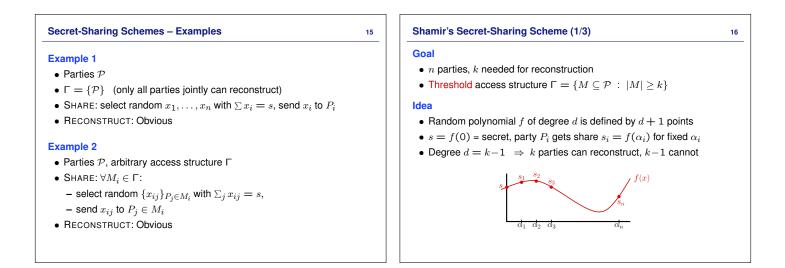
A secret-sharing scheme for parties ${\mathcal P}$ and access structure Γ

- is a pair of protocols (SHARE, RECONSTRUCT), s.t.
- Correctness:
 - 1. After SHARE, there is a unique value s',
 - where s' = s (the dealer's input) if the dealer is honest
 - 2. After $\mathsf{Reconstruct}(M)$, if $M \in \Gamma$, all players in M know s'

14

18

• Privacy: After SHARE, non-qualified sets have no information about \boldsymbol{s}



17

Shamir's Secret-Sharing Scheme (2/3)

Starting Point: To each party P_i , some unique $\alpha_i \in \mathbb{F} \setminus \{0\}$ is assigned.

1. D: choose random f with f(0) = s and $\deg(f) \le d$

(i.e., choose random
$$r_1, \ldots, r_d$$
, let $f(x) = s + r_1 x + \ldots + r_d x^d$)
2. D: send $s_i = f(\alpha_i)$ to $\forall P_i$

RECONSTRUCT

- 1. $\forall P_i$: send s_i to P
- 2. *P*: compute *s* with Lagrange interpolation:

$$f(x) = \sum_{i=1}^{n} \lambda_i(x) \, s_i, \text{ where } \lambda_i(x) = \prod_{\substack{j=1\\j\neq i}}^{n} \frac{x - \alpha_j}{\alpha_i - \alpha_j}.$$

hence $s = \sum_{i=1}^{n} w_i s_i, \text{ where } w_i = \lambda_i(0) = \prod_{\substack{j=1\\j\neq i}}^{n} \frac{-\alpha_j}{\alpha_i - \alpha_j}.$

Shamir's Secret-Sharing Scheme (3/3)

Analysis for passive adversary:

Correctness

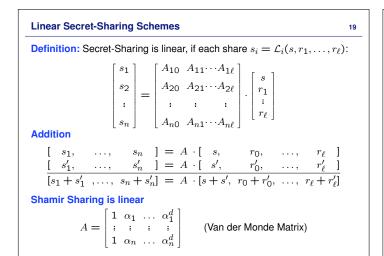
- 1: by inspection, s' = f(0)
- 2: due to Lagrange interpolation (given $|M| \ge k = d + 1$)

Privacy

- For $\leq d = k-1$ shares, every secret *s* is "compatible" (same #polys)
- \Rightarrow adversary with < k shares obtains no information about s.

Note

- Degree is at most d, not exactly d
- Otherwise privacy violation



MPC Passive: Secret-Sharing and Addition

Setting

• n parties, t corrupted (passive), t < n/2

Secret Sharing

- \Rightarrow any t (corrupted) parties do not learn anything

Addition and Linear Functions

• Shamir-Sharing with degree t

• Shamir-Sharing is linear \Rightarrow apply linear function on shares

20

- a, b, \ldots shared by $a_1, \ldots, a_n, b_1, \ldots, b_n$, etc.
- Every P_i computes $c_i = \mathcal{L}(a_i, b_i, \ldots)$
- $c_1, ..., c_n$ is a sharing of $c = \mathcal{L}(a, b, ...)$

MPC Passive: Multiplication	21 Passive Protocol	2				
Starting Point: a, b shared by $a_1,, a_n, b_1,, b_n$	Share inputReconstruct Output0. P_i has input s.0. a is shared by $a_1,, a_i$	$\iota_n.$				
 Idea Every P_i computes d_i = a_i ⋅ b_i Observe: d₁,, d_n is some-kind-of sharing of c = a ⋅ b Could compute c from d₁,, d_n: c = ∑_{i=1}ⁿ w_id_i (Lagrange) Compute c as MPC: Every P_i has input d_i, compute (sharing of) c 	1. P_i : select $r_1,, r_t$ at random.1. $\forall P_j$: send a_j to P_i .2. P_i : comp. $\begin{pmatrix} s_1 \\ \vdots \\ r_t \end{pmatrix} = A \begin{pmatrix} r_1^s \\ \vdots \\ r_t \end{pmatrix}$.2. P_i : comp. $a = \mathcal{L}(a_1,$ 3. P_i : send s_j to every P_j .Addition and Linear Functions	, <i>a</i> _n).				
 Compute <i>c</i> as MPC. Every <i>P_i</i> has input <i>a_i</i>, compute (sharing of) <i>c</i> Multiplication Protocol 1. ∀<i>P_i</i>: compute <i>d_i</i> = <i>a_ib_i</i>. 2. ∀<i>P_i</i>: share <i>d_i</i> → <i>d_i</i>1,, <i>d_{in}</i>. 	0. a, b, \ldots are shared by $a_1, \ldots, a_n, b_1, \ldots, b_n$, etc. 1. $\forall P_i$: compute $c_i = \mathcal{L}(a_i, b_i, \ldots)$. Multiplication 0. a, b are shared by $a_1, \ldots, a_n, b_1, \ldots, b_n$.					
3. $\forall P_j$: compute $c_j = w_1 d_{1j} + \ldots + w_n d_{nj}$.	1. $\forall P_i: \text{ compute } d_i = a_i b_i.$ 2. $\forall P_i: \text{ share } d_i \rightarrow d_{i1}, \dots, d_{in}.$ 3. $\forall P_j: \text{ compute } c_j = \mathcal{L}(d_{1j}, \dots, d_{nj}).$					

ר ר

