

c-Simulatability and Zero-Knowledge	Distinguishing Advantage
Definition: A three-move protocol (round) with challenge space C is <i>c</i> -simulatable if for any value $c \in C$ one can efficiently generate a triple (t, c, r) with the same distribution as occurring in the protocol (conditioned on the challenge being <i>c</i>), i.e., the conditional distribution $P_{TR C}$ is efficiently samplable.	Setting: Random variables X and Y, distributions P_X and P_Y Distinguisher • Algorithm A to distinguish X from Y • Goal: on input $x \leftarrow X$, output "X"; on input $y \leftarrow Y$, output "Y" Advantage: $\Delta^A(X,Y) := \Pr_X[A(x) = "X"] - \Pr_Y[A(y) = "X"] $
 Lemma: A 3-move <i>c</i>-simulatable protocol is HVZK. (assumption: challenge is efficiently samplable) Lemma: A HVZK round with <i>c</i> uniform from <i>C</i> for poly-bounded <i>C</i> is ZK. 	• Families of random variables $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ • $\Delta^A(X_n, Y_n) := \left \Pr_{X_n}[A(x) = "X^*] - \Pr_{Y_n}[A(y) = "X^*] \right $
Lemma: A sequence of ZK protocols is a ZK protocol. Theorem: A protocol consisting of <i>c</i> -simulatable rounds, with uniform challenge from a (per-round) polynomially bounded space C , is perfect ZK.	Indistinguishability Levels • Perfect: $P_X = P_Y$, i.e. $\forall A : \Delta^A(X_n, Y_n) = 0$ • Statistical: $\forall A : \Delta^A(X_n, Y_n) = \text{negligible in } n$ • Computational: \forall polytime $A : \Delta^A(X_n, Y_n) = \text{negligible in } n$