Cryptographic Protocols

Spring 2021

Part 2

Polynomial, Negligible, Noticeable

Function $f : \mathbb{N} \to \mathbb{R}$

- f is polynomial $\Leftrightarrow \exists c \exists n_0 \forall n \ge n_0 : f(n) \le n^c$
- f is negligible $\Leftrightarrow \forall c \exists n_0 \forall n \geq n_0: f(n) \leq \frac{1}{n^c}$
- f is noticeable $\Leftrightarrow \exists c \exists n_0 \forall n \ge n_0: f(n) \ge \frac{1}{n^c}$
- f is overwhelming $\Leftrightarrow 1-f$ is negligible

Implications

- poly \times poly = poly; poly(poly) = poly
- $\bullet \ \mathsf{poly} \times \mathsf{negligible} \ \subseteq \ \mathsf{negligible}$
- (poly \times noticeable) \cap overwhelming \neq {}

P, NP, PSPACE, etc.	Interactive Proofs of Statements
Running Time of a Turing machine (TM, aka algorithm)• for input z: number of steps $s(z)$ • for n-bit input: $t(n) := \max\{s(z) : z \le n\}$ (worst-case)• TM is poly-time iff $t(n)$ is a polynomial functionComplexity Classes• P = {L : \exists poly-time TM that decides L}• NP = {L : \exists poly p \exists poly comp. $\varphi : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}$ s.t. $z \in L \Leftrightarrow \exists x (\varphi(z, x) = 1 \land x \le p(z)) \}$	Def: An interactive proof for language <i>L</i> is a pair (P,V) of int. programs s.t. i) running time of V is polynomial in $ z $ ii) $\forall z \in L$: $\Pr((\Pr(z) \Leftrightarrow V(z)) \rightarrow \text{"accept"}) \ge 3/4$ $[p = 3/4]$ iii) $\forall z \notin L, \forall P' : \Pr((P'(z) \Leftrightarrow V(z)) \rightarrow \text{"accept"}) \le 1/2$ $[q = 1/2]$ Examples: Sudoku, GI, GNI, Fiat-Shamir. Remarks • Constants <i>p</i> , <i>q</i> are arbitrary, could be $p = 1 - 2^{- z }$ and $q = 2^{- z }$
(also: NP = { $L : \exists$ non-det. poly-time TM that accepts L }) • NP-hard = { $L : \forall L' \in$ NP: accepting L' can be poly reduced to L } • NP-Complete = NP \cap NP-hard • PSPACE = { $L : \exists$ TM that accepts L with poly memory (in any time)}	 If iii) holds only for poly-time P': interactive argument (not a proof) Probabilistic P are not more powerful than deterministic P Def: IP = set of L which have an interactive proof. Theorem: IP = PSPACE.