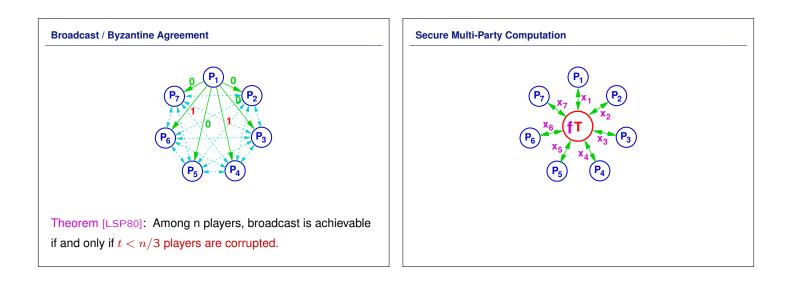


Cryptographic Protocols

- 1. Interactive Proofs and Zero-Knowledge Protocols
- 2. Secure Multi-Party Computation
- 3. Broadcast
- 4. Blockchain



Adversary types:			
 passive: plays correc active: cheats arbitra 		lyses trans	cript.
Types of security:			
 computational: intrac information-theoretic: 			r
type of security	adv. type	condition	1
computational	passive	t < n	1
computational	active	t < n/2	
oompatational		t < n/2	
information-theoretic	passive	t < n/2	

						4		
2					1		5	
4	3		7	5		1		2
				7			6	
	5	3				2	4	
	4			1				
3		1		8	2		7	4
	2		9					5
		8						

Formal Proofs (Conventional)

Proof system for a class of statements

- A statement (from the class) is a string (over a finite alphabet).
- The semantics defines which statements are true.
- A proof is a string.
- Verification function φ : (statement, proof) \mapsto {accept, reject}.

Example: *n* is non-prime

- Statement: a number n (sequence of digits), e.g. "399800021".
- Proof: a factor *f*, e.g. "19997".
- Verification: Check whether *f* divides *n*.

Requirements for a Proof System

- Soundness: Only true statements have proofs.
- Completeness: Every true statement has a proof.
- Efficient verifiability: φ is efficiently computable.

Proof System: Sudoku has Solution

Good Proof System

- Statement: 9-by-9 Matrix \mathcal{Z} over $\{1, \dots, 9, \bot\}$.
- Proof: 9-by-9 Matrix X over {1,...,9}.
- Verification:
 - 1)_____
 - 2)

Stupid Proof System

- Statement: 9-by-9 Matrix $\mathcal Z$ over $\{1,\ldots,9,\bot\}.$
- Proof: "" (empty string)
- Verification: For all possible \mathcal{X} , check if \mathcal{X} is solution for \mathcal{Z} .
- \rightarrow This is not a proof!

Efficient Primality Proof	Two Types of Proofs
 An efficiently verifiable proof that n is prime: For small n (i.e., n ≤ T), do table look-up (empty proof). The list of distinct prime factors p₁,, p_k of n − 1. (n − 1 = □^k_{i=1} p_i^{α_i}) 	 Proofs of Statements: Sudoku Z has a solution X. z is a square modulo m, i.e. ∃x z = x² (mod m). The graphs G₀ and G₁ are isomorphic. The graphs G₀ and G₁ are non-isomorphic. P = NP
2. Number a such that $a^{n-1} \equiv 1 \pmod{n}$ and $a^{(n-1)/p_i} \not\equiv 1 \pmod{n}$ for $1 \le i \le k$.	Proofs of Knowledge:• I know a solution \mathcal{X} of Sudoku \mathcal{Z} .• I know a value x such that $z = x^2 \pmod{m}$.• I know an isomorphism π from \mathcal{G}_0 to \mathcal{G}_1 .• I know a non-isomorphism between \mathcal{G}_0 and \mathcal{G}_1 ????• I know a proof for either $P = NP$ or $P \neq NP$.• I know x such that $z = g^x$.
3. Primality proofs for p_1, \ldots, p_k (recursion!).	Often: Proof of knowledge \rightarrow Proof of statement (knowledge exists)

Static Proof			
Prover P	Verifier V		
knows statement s,	knows statement s		
proof p p	\blacktriangleright $(s,p) \rightarrow \{ \text{accept}, \text{respective} \}$	ject}	
Interactive Proof		Motivation for IP's:	
Prover P	Verifier V	1. zero knowledge	
knows statement s , m_1	-▶	 2. more powerful 3. applications 	
$\checkmark \frac{m_2}{\dots}$	<u>!</u>		
m_ℓ	\blacktriangleright $(s, m_1, \ldots, m_\ell) \rightarrow$	(accont roject)	

Interactive Proofs: Requirements (Informal)

- **Completeness:** If the statement is true [resp., the prover knows the claimed information], then the correct verifier will always accept the proof by the correct prover.
- Soundness: If the statement is false [resp., the prover does not know the claimed information], then the correct verifier will accept the proof only with negligible probability, independent of the prover's strategy.

Desired Property:

• Zero-Knowledge: As long as the prover follows the protocol, the verifier learns nothing but the fact that the statement is true [resp., that the prover knows the claimed information].

