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Abstract Asimple zero-knowledge proof of knowledge protocol is presented ofwhichmany
known protocols are instantiations. These include Schnorr’s protocol for proving knowledge
of a discrete logarithm, the Fiat–Shamir andGuillou–Quisquater protocols for proving knowl-
edge of a modular root, protocols for proving knowledge of representations (like Okamoto’s
protocol), protocols for proving equality of secret values, a protocol for proving the cor-
rectness of a Diffie–Hellman key, protocols for proving the multiplicative relation of three
commitments (as required in secure multi-party computation), and protocols used in creden-
tial systems. This unifies a substantial body of work and can also lead to instantiations of the
protocol for new applications.
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1 Introduction

Finite cyclic groups, in particular elliptic curves over a finite field, are of paramount impor-
tance in cryptography. A large number of known cryptographic systems and protocols is
based on the hardness of a certain problem defined for such a group, most prominently the
discrete logarithm problem. Scott Vanstone was one of the prime contributors to this field,
and this paper, which presents a zero-knowledge proof of knowledge of a pre-image in a
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664 U. Maurer

finite group, is dedicated to Scott, with whom I have also had the pleasure of collaborating
fruitfully [13] and who has been a dear friend for almost three decades.

1.1 Interactive proofs

A conventional proof of a statement is, informally, a sequence of elementary, easily verifiable
steps, which, starting from the axioms (or previously proven facts), in the last step yields
the statement to be proved. In contrast to a conventional proof, an interactive proof [11]
is a protocol that is defined between a prover, usually called P or Peggy, and a verifier,
usually called V or Vic. More formally, an interactive proof is a pair (P, V ) of programs
implementing the protocol steps Peggy and Vic are supposed to execute. An interactive
proof must be complete and sound. Completeness means that an honest prover succeeds in
convincing an honest verifier, and soundness means that a dishonest prover does not succeed
in convincing Vic of a false statement.

Several motivations, theoretical and practical, exist for considering interactive proofs as
opposed to conventional proofs. One main motivation is that, in contrast to a conventional
proof, an interactive proof can be performed in a way that transfers only the conviction
that the claimed statement is true but does not leak any further information, in particu-
lar not a transferable proof. More precisely, an interactive proof is called zero-knowledge
if the verifier could simulate the entire protocol transcript by himself, without interacting
with the prover. In particular, this implies that the transcript is not convincing for any other
party.

There are two types of interactive proofs: proofs of a mathematical statement and proofs
of knowledge. A proof of knowledge proves that Peggy knows a value satisfying a certain
predicate (a witness). Often a proof of a mathematical statement (e.g. that a number is a
square modulo an RSA modulus) is carried out as a proof of knowledge of a witness for the
statement (i.e., of a square root).

1.2 Contributions of this paper

We introduce a new level of abstraction in a general type of proof of knowledge, namely of
a preimage of a group homomorphism, and thereby unify and generalize a large number of
protocols in the literature. We observe that actually the identical principle has been reused
several times, where each result came with a separate proof. While the similarity of different
protocols certainly did not go unnoticed, a viewpoint that shows them to be instantiations of
the same protocol is new to our knowledge. We call this protocol, described in Sect. 5, the
main protocol.

The relation of our results to Cramer’s �-protocols [6] (see also [7]), also an abstraction
of a general type of proofs of knowledge, will be discussed in Sect. 5.3. In short, we go a
step further and not only abstract a protocol type, but actually show that many protocols are
the same protocol when seen at the right level of abstraction.

The advantage of our abstract viewpoint is that one can provide a proof once and for all, and
for each individual instantiation only needs to describe the group homomorphism underlying
the particular example and check the conditions of Theorem 3, our main theorem. This
requires just a few lines for a complete proof that a given protocol is a zero-knowledge proof
of knowledge. Moreover, this approach leads to new protocols by using new instantiations
of the group homomorphism.
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Zero-knowledge proofs of knowledge for group homomorphisms 665

1.3 Some terminology

We use the standard notions of efficient and negligible and point out that such definitions are
asymptotic, i.e., for asymptotic families (of groups) depending on a security parameter (which
we will not make explicit). Efficient is usually defined as polynomial-time and negligible as
vanishing faster than the inverse of any polynomial. In general, we assume that the reader is
familiar with the basic aspects of interactive proofs and cryptographic thinking.

1.4 Outline

The outline of the paper is as follows. In Sect. 2 we discuss two well-known examples of
interactive proofs. In Sect. 3 we formalize the concept of a proof of knowledge. In Sect. 4
we define what it means for a protocol to be zero-knowledge. In Sect. 5 we present our new
general protocol, referred to as themain protocol, and prove that it is a zero-knowledge proof
of knowledge. In Sect. 6 we show that many known and new protocols are instantiations of
the main protocol. Sects. 3 and 4 can be skipped if the reader is familiar with the topic and
is just interested in the unified viewpoint.

2 Two protocol examples

In this section we discuss two classical examples of interactive proofs of knowledge.

2.1 The Schnorr protocol

Consider a cyclic group H with prime order |H | = q forwhich computing discrete logarithms
(DL) is considered infeasible. Peggy wants to prove to Vic that she knows the DL x of an
element z to the base h, i.e., that she knows x such that z = hx . For example, z could be
Peggy’s public key and the protocol is then used as an identification protocol by which Peggy
proves knowledge of the secret key.

The protocol, proposed bySchnorr [18], works as follows (see Fig. 1). First, Peggy chooses
k ∈ Zq at random and sends the group element t = hk to Peggy. ThenVic chooses a challenge
value c ∈ C at random from a challenge space C which is a subset of [0, q − 1]. Then Peggy
answers by sending the value r = k+xc (mod q). Finally, Vic accepts the protocol execution
if and only if hr = t · zc.

Let us analyze the protocol. It is easy to see that if Peggy knows x and performs the protocol
honestly, then Vic will accept (completeness). To argue about soundness, we observe that
unless Peggy knows x , she cannot answer more than one challenge correctly. This can be
seen as follows. If Peggy could answer, for a fixed t , two challenges c and c′ by r and r ′,
respectively, so that Vic accepts, then she could compute x (and hence knows it).1 This can
be shown as follows: we have hr = t · zc and hr

′ = t · zc′
and thus

hr−r ′ = zc−c′ = hx(c−c′).

Therefore,

r − r ′ ≡ x(c − c′) (mod q),

1 A correct argument is more involved; one has to argue that there exists an efficient knowledge extractor (see
Sect. 3).
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Peggy Vic

knows zx = hx

k ∈R Zq

t := hk

t

c ∈R C ⊆ [0, q−1]
c

r := k + xc (mod q)
r

check hr ?= t · zc

Fig. 1 The Schnorr protocol for proving knowledge of a discrete logarithm x of an element z = hx in the
group H

from which we obtain

x ≡ r1 − r2
c1 − c2

(mod q).

Note that it is important that q is prime since otherwise the inverse of c1 − c2 modulo q may
not be defined, unless one restricts C in an artificial way.

One might be tempted to conclude from the above argument that any prover with success
probability at least 2/|C| can answer at least two challenges and therefore knows x . However,
this informal argument turns out to be incorrect (see Sect. 3), requiring a clean formalization
of what it means to know a value.

Now we argue informally that the protocol is zero-knowledge. Without knowledge of x ,
one can, for any challenge c, generate a triple (t, c, r) with the distribution as it occurs in
the protocol. One can prove (this is not entirely trivial) that even a dishonest verifier can
simulate perfectly the entire transcript he would see in a protocol execution with Peggy, i.e.,
with the same probability distribution as it occurs in the real protocol (see Sect. 4). However,
the simulation is efficient only if the size |C| of the challenge space is bounded to polynomial
size. To obtain the zero-knowledge property, one may therefore choose |C| to be relatively
small (e.g. on the order of 106), and repeat the protocol several (say s) times. Such a protocol
is zero-knowledge and achieves the soundness guarantees corresponding to the size of the
overall challenge space Cs .

2.2 The Fiat–Shamir and Guillou–Quisquater protocols

Consider a modulus m which is assumed to be difficult to factor. For concreteness, one can
think of m as being an RSA-modulus [17]. For a given exponent e (with gcd(e, ϕ(m)) = 1),
breaking the RSA cryptosystem means to compute eth roots modulo m. This is considered
hard and, for a generic model of computation, has been proved to be equivalent to factoring
m [1]. Unlike for RSA, in our context e is considered to be prime.
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Zero-knowledge proofs of knowledge for group homomorphisms 667

ciVyggeP

knows zx = xe

k ∈R Z∗
m

t := ke

t

c ∈R C ⊆ [0, e−1]
c

r := k · xc

r

check re
?= t · zc

Fig. 2 The Guillou–Quisquater (GQ) protocol for proving knowledge of an eth root x modulo m of a given
element z ∈ Z∗

m

The Guillou–Quisquater (GQ) protocol [12] allows Peggy to prove to Vic that she knows
the eth root x modulo m of a given number z ∈ Z∗

m , i.e., she knows x such that xe = z in
Z∗
m . (Again, z could be Peggy’s public key for which she wants to prove knowledge of the

corresponding private key.)
The protocol works as follows (see Fig. 2). First, Peggy chooses k ∈ Z∗

m at random and
sends the group element t = ke to Peggy. Then Vic chooses a challenge value c ∈ C at
random from a challenge space C ⊆ [0, e − 1]. Then Peggy answers by sending the value
r = k · xc (in Z∗

m , i.e., modulo m). Finally, Vic accepts the protocol execution if and only if
re = t · zc.

This protocol is a generalization of the Fiat–Shamir protocol [9,10] which considers the
special case e = 2. If |C| (and hence e) is sufficiently large, then a single execution of the
protocol suffices. Otherwise, the protocol is repeated a sufficient number of times.

It is easy to see that if Peggy knows x and performs the protocol honestly, then Vic will
accept (correctness). To argue about soundness, we observe again that unless Peggy knows x ,
she cannot answer more than one challenge correctly. This can be seen as follows. If Peggy
could answer, for fixed t , both challenges c and c′ by r and r ′, respectively (so that Vic
accepts), then she could compute x (and hence knows it). This can be shown as follows: We
have (in Z∗

m) r
e = t · zc and r ′e = t · zc′

and thus

( r

r ′
)e ≡ zc−c′

(mod m).

and hence

r

r ′ ≡ xc−c′
(mod m).

In addition to xc−c′
, Peggy trivially knows another power of x , namely z = xe. When e is

prime, then c − c′ and e are relatively prime. From two different powers of x with relatively
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prime exponents one can compute x . Namely, application of Euclid’s extended gcd-algorithm
yields integers a and b such that

ea + (c − c′)b = 1.

Therefore x can be computed as x = xea+(c−c′)b, i.e., as

x ≡ za ·
( r

r ′
)b

(mod m).

2.3 Comparing the two protocols

The Schnorr protocol and the GQ protocol have a number of similarities, as already indicated
by the fact that we chose to use the same names (k, t , c, and r ) for the different quantities
appearing in the protocol. But nevertheless the two protocols are quite different. The mathe-
matical structure is different and so is the argument for proving that from the answers to two
different challenges one can compute x . However, in Sects. 5 and 6 we show that there is a
level of abstraction at which the two protocols are identical, i.e., instantiations of the same
protocol, as are many more protocols proposed in the literature.

3 Proofs of knowledge

In this section we recall the definition of a proof of knowledge due to Feige et al. [9] and state
a general theorem that can be used to easily prove that a protocol is a proof of knowledge.

The above soundness argument, namely that being able to answer two challenges implies
knowledge of the secret value x , must be made more precise. Let us formalize the concept
of a proof of knowledge. What constitutes knowledge, corresponding to a given value z, is
defined by a (verification) predicate2

Q : {0, 1}∗ × {0, 1}∗ → {false, true}.
For a given value (a bit-string) z, Peggy claims to know a value (bit-string) x such that
Q(z, x) = true.

The following classical definition’ [9] captures the notion that being successful in the
protocol implies knowledge of a witness x with Q(z, x) = true.

Definition 1 An interactive protocol (P, V ) is a proof of knowledge for predicate Q if the
following holds:

– (Completeness.) V accepts when P has as input an x with Q(z, x) = true.
– (Soundness.) There is an efficient program K , called knowledge extractor, with the

following property. For any (possibly dishonest) P̂ with non-negligible probability of
making V accept, K can interact with P̂ and outputs (with overwhelming probability)
an x such that Q(z, x) = true.3

We now capture the special property of a protocol which we proved for the Schnorr and
the GQ protocols and which allowed us to argue about soundness.

2 Equivalently, one can consider a relation on {0, 1}∗.
3 K must be able to choose the randomness of P̂ and to reset P̂ .

123



Zero-knowledge proofs of knowledge for group homomorphisms 669

Definition 2 Consider a predicate Q for a proof of knowledge. A three-move protocol round
(Peggy sends t , Vic sends c, Peggy sends r ) with challenge space C is 2-extractable4 if
from any two triples (t, c, r) and (t, c′, r ′) with distinct c, c′ ∈ C accepted by Vic one can
efficiently compute an x with Q(z, x) = true.

The following theorem (see also [6,7]) states that for a protocol to be a proof of knowledge
it suffices to check the 2-extractability condition for one (three-move) round of the protocol.

Theorem 1 An interactive protocol consisting of s 2-extractable roundswith challenge space
C is a proof of knowledge for predicate Q if 1/|C|s is negligible.5
Proof We need to exhibit a knowledge extractor K . It can be defined by the following simple
procedure:

1. Choose the randomness for P̂ .
2. Generate two independent protocol executions between P̂ and V (with the same chosen

randomness for P̂).
3. If V accepts in both executions and the challenge sequences were distinct, then identify

the first round with different challenges c and c′ (but, of course, the same t). Use 2-
extractability to compute an x , and output it (and stop).
Otherwise go back to step 1.

It is not very difficult to show that the expected running time of the knowledge extractor is
polynomial if the success probability of P̂ is non-negligible. �	

4 Zero-knowledge protocols

We now discuss the zero-knowledge property of a protocol. Informally, a protocol between
P and V is zero-knowledge if even a dishonest V , which for this reason we call V̂ , does not
learn anything from the protocol execution which he did not know before. This is captured
by the notion of simulation [11]: V̂ could simulate a protocol transcript by himself which
is indistinguishable from a real transcript that would occur in an actual protocol execution
between P and V̂ .

Definition 3 A protocol (P, V ) is zero-knowledge if for every efficient program V̂ there
exists an efficient program S, the simulator, such that the output of S is indistinguishable
from the view of V̂ (consisting of its internal randomness and the transcript of the protocol
execution between P and V̂ ). If the indistinguishability is perfect,6 i.e., the probability dis-
tribution of the simulated and the actual transcript are identical, then the protocol is called
perfect zero-knowledge.

We now capture the special property of a protocol round, called c-simulatability, which is
required to construct the zero-knowledge simulator.

Definition 4 A three-move protocol round (Peggy sends t , Vic sends c, Peggy sends r ) with
challenge space C is c-simulatable7 if for any value c ∈ C one can efficiently generate a triple

4 It is also often called special soundness [6,7] when the challenge space is large.
5 The last point implies that every particular challenge sequence c1, . . . , cs has negligible probability of being
selected by an honest verifier.
6 The indistinguishability could also be statistical or computational.
7 This is sometimes also called special honest-verifier zero-knowledge [6,7].
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670 U. Maurer

(t, c, r) with the same distribution as occurring in the protocol (conditioned on the challenge
being c).

The following theorem states that for a protocol to be zero-knowledge it suffices to check
the c-simulatability condition for one round of the protocol.

Theorem 2 Aprotocol consisting of c-simulatable three-move rounds,with uniformly chosen
challenge from a polynomially-bounded (per-round) challenge space C, is perfect zero-
knowledge.

The proof of this theorem is not entirely trivial. We just describe the basic idea of the sim-
ulator. It simulates one round after the next. In each round (say the i th), the simulator chooses
a uniformly random challenge ci , generates a triple (ti , ci , ri ) using the c-simulatability, and
then checks whether V̂ would actually issue challenge ci if it were in the corresponding state
in round i . If the check succeeds, then this round is appended to the simulated transcript as
the i th round, otherwise the simulation of the i th round is restarted.8

5 Proving knowledge of a preimage of a group homomorphism

5.1 One-way group homomorphisms

We consider two groups (G, �) and (H,⊗), where we intentionally use special symbols for
the group operations, avoiding the addition and multiplication symbols “+” and “·”. We
assume that the group operations � and ⊗ are efficiently computable.

A function f : G → H is a homomorphism if

f (x � y) = f (x) ⊗ f (y).

We will consider the case where f is (believed to be) a one-way function, such that it is
infeasible to compute x from f (x) for a randomly chosen x .9 In this case it is meaningful
for a prover Peggy to prove that she knows an x such that for a given value z we have
z = f (x). To simplify the notation we write [x] instead of f (x).10 We can consider [x] to
be an embedding of x ∈ G in H . We point out that f need not be bijective and therefore a
value z = [x] does not necessarily determine x . But it is well-defined for which values x we
have z = [x].

Given embedded values [x] and [y] we can efficiently compute

[x � y] = [x] ⊗ [y],
without knowing x or y, due to the homomorphism.

5.2 The main protocol

The protocol in Fig. 3, which we call the main protocol, is a proof of knowledge of a value x
such that z = [x], for a given value z, provided that the two conditions stated in the following
8 This requires access to the strategy of V̂ , or V̂ must be rewindable.
9 Note, however, that our treatment and claims do not depend on the one-way property. Should f not be
one-way, then the protocols are perhaps less useful, but they still have the claimed properties.
10 When we define a group homomorphism in terms of a given group homomorphism (denoted [·]), then we
write [[·]] to avoid overloading the symbol [·].
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ciVyggeP

knows zx = [x]

k ∈R G

t := [k]
t

c ∈R C ⊆ N
c

r := c

r

check [r] ?= t⊗ zc

Fig. 3 Main protocol: proof of knowledge, for a given value z, of a value x such that z = [x], where x �→ [x]
is a (one-way) group homomorphism

theorem are satisfied. Note that G and H need not be commutative. The challenge space can
be chosen as an arbitrary subset of N. If it is chosen to be small,11 then one needs several
(three-move) rounds to reduce the soundness error to be negligible.

Theorem 3 If values � ∈ Z and u ∈ G are known such that

(1) gcd(c1 − c2, �) = 1 for all c1, c2 ∈ C (with c1 �= c2), and
(2) [u] = z�,

then the three-move protocol round described in Fig. 3 is 2-extractable. Moreover, a protocol
consisting of s rounds is a proof of knowledge if 1/|C|s is negligible, and it is zero-knowledge
if |C| is polynomially bounded.

Proof 2-extractability can be proved as follows: From r and r ′ such that [r ] = t ⊗ zc and
[r ′] = t ⊗ zc

′
for two different challenges c and c′ we can obtain x̃ satisfying [x̃] = z, as

x̃ = ua �
(
r ′−1 � r

)b
,

where a and b are computed using Euclid’s extended gcd-algorithm such that

�a + (c − c′)b = 1.

We make use of

[r ′−1 � r ] = [r ′−1] ⊗ [r ] = z−c′ ⊗ t−1 ⊗ t ⊗ zc = z−c′ ⊗ zc = zc−c′

11 There can be at least two reasons for choosing a small challenge space. First, a larger space may not work,
for example if e is small in the GQ protocol. Second, one may want the protocol to be zero-knowledge, which
generally does not hold for large (per-round) challenge space.
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672 U. Maurer

to see that [x̃] = z:

[x̃] = [ua � (r ′−1 � r)b]
= [u]a ⊗ [r ′−1 � r ]b
= (z�)a ⊗ (zc−c′

)b

= z�a+(c−c′)b

= z.

Theorem 1 implies directly that the protocol is a proof of knowledge, and Theorem 2
implies that it is zero-knowledge if |C| is polynomially bounded since it is c-simulatable.
This is easy to see: Given z and a challenge c, one chooses r at random and computes t as
t = [r ] ⊗ z−c. �	
5.3 Comparison with some related work

The approach described in this paper is similar in flavor to other papers, some of which also
consider a more general case where the group order is unknown (e.g. see [2–5]) but none
of them achieves the presented level of abstraction. The result should be contrasted with
another approach, due to Cramer [6] (see also [7]) to abstracting a general type of proofs
of knowledge. Cramer introduced the notion of �-protocols which are basically three-move
protocols, as discussed in this paper, which are both 2-extractable and c-simulatable. All the
protocols we consider are �-protocols. However, we go further in that we show that a large
class of protocols are not only of the same protocol type, but are actually the same protocol,
thus requiring only one proof of the claimed properties. In order to apply our Theorem 3 one
only needs to specify the groups G and H , the homomorphism, and check the two conditions
of Theorem 3.

6 Special cases of the main protocol

In this section we describe a number of protocols as instantiations of our main protocol.

6.1 Schnorr and GQ as special cases

The Schnorr protocol is the special case where (G, �) = (Zq ,+) (with addition modulo q in
Zq ) and H is a group of order q with the group operation written as multiplication (i.e., “·”,
which can also be omitted). The (one-way) group homomorphism is defined by

G → H : x �→ [x] = hx .

The challenge spaceC can be an arbitrary subset of [0, q−1]. The two conditions ofTheorem3
are satisfied for � = q (if q is prime) and u = 0. Note that gcd(c1 − c2, �) = 1 for all distinct
c1, c2 ∈ C, and [u] = [0] = 1 = z� since every element of H raised to the group order
|H | = q is the neutral element of H .

The GQ protocol is the special case where (G, �) = (Z∗
m, ·) = (H,⊗). The one-way

homomorphism is defined by

G → H : x �→ [x] = xe.
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The challenge space C can be an arbitrary subset of [0, e − 1], provided e is prime. The
conditions of Theorem 3 are satisfied for � = e and u = z. Note that gcd(c1 − c2, �) = 1 for
all distinct c1, c2 ∈ C, and [u] = [z] = ze = z�.

6.2 Proof of knowledge of several values

Let

Gi → Hi : x �→ [x](i)
for i = 1, . . . , n be (possibly distinct) group homomorphisms for which, for the same �,
there exist u1, . . . , un and z1, . . . , zn satisfying Condition (2) in Theorem 3, i.e., [ui ](i) = z�i
for i = 1, . . . , n. Then also

G1 × · · · × Gn → H1 × · · · × Hn :
(x1, . . . , xn) �→ [(x1, . . . , xn)] =

(
[x1](1), . . . , [xn](n)

)

is a one-way group homomorphisms.12 Therefore the main protocol proves in one stroke
the knowledge of x1, . . . , xn such that for given z1 ∈ H1, . . . , zk ∈ Hn we have z1 =
[x1](1), . . . , zn = [xn](n). This can be seen by setting u = (u1, . . . , un) and z = (z1, . . . , zn)
since

[u] =
(
[u1](1), . . . , [un](n)

)
=

(
z�1, . . . , z

�
n

)
= z�.

A typical application of this protocol is for proving knowledge of several discrete loga-
rithms in (possibly distinct) groups of prime order q .

6.3 Proof of equality of embedded values

Let again

G → Hi : x �→ [x](i)
for i = 1, . . . , n be one-way group homomorphisms as in the previous section, but with
u1 = · · · = un = u. Then also

G → H1 × · · · × Hn : x �→ [x] =
(
[x](1), . . . , [x](n)

)

is a group homomorphisms (but not necessarily one-way). Therefore the main protocol
proves the knowledge of x that is simultaneously a preimage of all n homomorphisms.
More precisely, it proves knowledge of x such that for given z1 ∈ H1, . . . , zk ∈ Hk we
have z1 = [x](1), . . . , zk = [x](k).13 This can be seen by setting z = (z1, . . . , zn). A typical
application of this protocol is for proving that several discrete logarithms in groups of prime
order q are identical.

6.4 Proof of knowledge of a representation

Consider again a group H with prime order q , and let several generators h1, . . . , hm of H
be given. A representation of an element z ∈ H is a list (x1, . . . , xm) of exponents such

12 The group operations in G1 × · · · × Gn and H1 × · · · × Hn are defined component-wise.
13 Note that if the homomorphisms are bijective, then this protocol not only proves knowledge of x , but
actually that all embedded values are identical.
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674 U. Maurer

that z = hx11 hx22 · · · hxmm . (Note that such a representation is not unique.) We want to prove
knowledge of a representation of a given element z.

For the special case m = 2, a protocol for this purpose was proposed by Okamoto [15].
This is of interest, among other reasons, since Pedersen commitments [16] have this form.14

A protocol for proving knowledge of a representation can be obtained as another simple
instantiation of our main protocol, using the homomorphism

Zm
q → H : (x1, . . . , xm) �→ [(x1, . . . , xm)] = hx11 · · · hxmm .

The conditions of Theorem 3 are satisfied for the choice � = q and u := (0, . . . , 0) since
[(0, . . . , 0)] = h01 · · · h0m = 1 = z� for every z ∈ H .

6.5 Proof of knowledge of a set of linear representations

One can actually prove more general statements about the knowledge of representations,
namely knowledge of values x1, . . . , xr that simultaneously satisfy several representation
equations with respect to generators h1, . . . , hm . Such protocols appear, for example, in the
literature on credential systems.

For example, consider generators h1, h2, h3 of H . For given values z1, z2 ∈ H we can
prove knowledge of values x1, x2, x3, x4 ∈ Zq satisfying z1 = hx31 hx12 and z2 = hx21 hx42 hx13 .
The reader can figure out as an exercise how the homomorphism must be chosen such that
our main protocol provides such a proof.

More generally, one can prove knowledge of x1, . . . , xr such that for given values
z1, . . . , zs and, for sm linear (over GF(q)) functions φ11, . . . , φsm from GF(q)r to GF(q),
we have

zi = hφi1(x1,...,xr )
1 · hφi2(x1,...,xr )

2 · · · hφim (x1,...,xr )
m

for i = 1, . . . , s. The group homomorphism Zr
q → Hs is defined as

[(x1, . . . , xr )] =
⎛
⎝

m∏
j=1

h
φ1 j (x1,...,xr )
j , . . . ,

m∏
j=1

h
φs j (x1,...,xr )
j

⎞
⎠ .

6.6 Proof of correctness of Diffie–Hellman keys

Let H be a group with prime order |H | = q and generator h used in the Diffie–Hellman
protocol [8]. As for the Schnorr protocol, we define a homomorphic embedding by

G → H : x �→ [x] = hx .

Recall that in the Diffie–Hellman protocol, Alice chooses an a ∈ Zq and sends [a] = ha to
Bob and, symmetrically, Bob chooses a b ∈ Zq and sends [b] = hb to Alice. The common
secret key is [ab] = hab. It is believed that for general groups it is computationally hard to
decide whether or not a given key K ∈ H is the correct key, i.e., whether K = hab. This is
known as the Decisional Diffie–Hellman (DDH) problem. For example, if a very powerful
organizationwerewilling to computeDiffie–Hellman keys as a commercial service (returning
[ab] when given [a] and [b]), then the customer could not verify that the key is correct. In
this context, as well as in other contexts, it is useful to be able to prove the correctness of a

14 One commits to a value x by choosing a random r and sending hx1h
ρ
2 as the commitment (see also Sect. 6.7).

This commitment scheme is information-theoretically hiding (but only computationally binding).
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Diffie–Hellman key in zero-knowledge, in particular without leaking any information about
a or b. This is again achieved by a simple instantiation of our main protocol.

Let values A = [a], B = [b] andC = [c] be given.Wewish to prove that c = ab (mod q),
i.e., that A, B, and C form a so-called Diffie–Hellman triple. For this purpose we define the
following one-way group homomorphism which we denote by [[·]] and which is defined in
terms of the homomorphism [·] and of B:

Zq → H × H : x �→ [[x]] = ([x], [xb]) = (hx , Bx ).

Note that [xb] can be computed efficiently from B = [b] and x without knowing b. This
yields, as a special case of the main protocol for the homomorphism x → [[x]], the desired
proof: One proves knowledge of a preimage x (namely x = a) such that

[[x]] = (A,C).

Due to the particular choice of the homomorphism, this implies that c = ab.
While the protocol proves that the prover Peggy knows a, it does not prove that she knows

b or c. (This does not contradict the fact that the claim c = ab is indeed proved.) If desired,
a proof of knowledge of b (and hence also of c) could be linked into the above proof using
the technique of Sect. 6.3.

6.7 Multiplication proof for pedersen commitments

An important step in secure multi-party computation (MPC) protocols is for a party to com-
mit to the product of two values it is already committed to, and to prove that this product
commitment is correct. We show how such a proof can be given for Pedersen commitments.

Recall that in the Pedersen commitment scheme one commits to a value x ∈ Zq by
choosing ρx ∈ Zq at random and sending the value gxhρx . (To avoid unnecessary indices we
denote here the two generators as g and h instead of h1 and h2.)We consider the commitment
one-way homomorphism

Zq × Zq → H : (x, ρx ) �→ [(x, ρx )] = gxhρx .

Since this commitment scheme is information-theoretically hiding, the value x is not
determined by the commitment. What counts is how the committing party can open the
commitment.

Let three commitments A, B,C ∈ H by Peggy be given. In the following we assume that
it is clear from the context that Peggy can open B as (b, ρb). If this were not the case, one
could incorporate such a proof using the technique of Sect. 6.3. We describe a protocol that
allows Peggy to prove that she can open A as (a, ρa) and C as (c, ρc) with c = ab.

For this purpose we define the following one-way group homomorphism:

Z3
q → H × H : (x, ρx , σx ) �→ [[(x, ρx , σx )]] = ([(x, ρx )], [(xb, xρb + σx )]),

where the second component can be computed as

[(xb, xρb + σx )] = Bxhσx

without knowledge of b and ρb (with B = [(b, ρb)]).
The desired proof can now be obtained as a special case of the main protocol: Peggy

proves that she knows a triple (x, ρx , σx ) such that

[[(x, ρx , σx )]] = (A,C).
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As can easily be verified, this proof is successful for the choice

(x, ρx , σx ) = (a, ρa, ρc − aρb).

7 Conclusions

The described protocol for proving knowledge of a preimage of a group homomorphism is
the abstraction of a large class of protocols. The presented list of examples is by no means
exhaustive. We encourage the reader to find other protocols in the literature which can be
described as an instance of the main protocol.
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