
Chapter 6

Logic

6.1 Introduction

In Chapter 2 we have introduced some basic concepts of logic, but the treat-
ment was quite informal. In this chapter we discuss the foundations of logic
in a mathematically rigorous manner. In particular, we clearly distinguish be-
tween the syntax and the semantics of a logic and between syntactic derivations
of formulas and logical consequences they imply. We also introduce the con-
cept of a logical calculus and define soundness and completeness of a calculus.
Moreover, we discuss in detail a concrete calculus for propositional logic, the
so-called resolution calculus.

At a very general level, the goal of logic is to provide a framework for ex-
pressing mathematical statements and for expressing and verifying proofs for
such statements. A more ambitious, secondary goal can be to provide tools for
automatically or semi-automatically generating a proof for a given statement.

A treatment of logic usually begins with a chapter on propositional logic1

(see Section 6.5), followed by a chapter on predicate (or first-order) logic2 (see
Section 6.6), which can be seen as an extension of propositional logic. There are
several other logics which are useful in Computer Science and in mathematics,
including temporal logic, modal logic, intuitionistic logic, and logics for rea-
soning about knowledge and about uncertainty. Most if not all relevant logics
contain the logical operators from propositional logic, i.e., ∧,∨,¬ (and the de-
rived operators → and ↔), as well as the quantifiers (∀ and ∃) from predicate
logic.

Our goal is to present the general concepts that apply to all types of log-
ics in a unified manner, and then to discuss the specific instantiations of these

1German: Aussagenlogik
2German: Prädikatenlogik

127

6.2. Proof Systems 128

concepts for each logic individually. Therefore we begin with such a general
treatment (see Sections 6.2, 6.3, and 6.4) before discussing propositional and
predicate logic. From a didactic viewpoint, however, it will be useful to switch
back and forth between the generic concepts of Sections 6.2, 6.3, and 6.4 and the
concrete instantiations of Sections 6.5 and 6.6.

We give a general warning: Different treatments of logic often use slightly or
sometimes substantially different notation.3 Even at the conceptual level there
are significant differences. One needs to be prepared to adopt a particular no-
tation used in a particular application context. However, the general principles
explained here are essentially standard.

We also refer to the book by Kreuzer and Kühling and that by Schöning
mentioned in the preface of these lecture notes.

6.2 Proof Systems

6.2.1 Definition

In a formal treatment of mathematics, all objects of study must be described in
a well-defined syntax. Typically, syntactic objects are finite strings over some
alphabet Σ, for example the symbols allowed by the syntax of a logic or simply
the alphabet {0, 1}, in which case syntactic objects are bit-strings. Recall that Σ∗

denotes the set of finite strings of symbols from Σ.

In this section, the two types of mathematical objects we study are mathe-
matical statements of a certain type and proofs for this type of statements. By a
statement type we mean for example the class of statements of the form that
a given number n is prime, or the class of statements of the form that a given
graph G has a Hamiltonian cycle (see below), or the class of statements of the
form that a given formula F in propositional logic is satisfiable.

Consider a fixed type of statements. Let S ⊆ Σ∗ be the set of (syntactic
representations of) mathematical statements of this type, and let P ⊆ Σ∗ be the
set of (syntactic representations of) proof strings.4

Every statement s ∈ S is either true or false. The truth function

τ : S → {0, 1}

assigns to each s ∈ S its truth value τ(s). This function τ defines the meaning,
called the semantics, of objects in S.5

3For example, in some treatments the symbol ⇒ is used for →, which can be confusing.
4Membership in S and also in P is assumed to be efficiently checkable (for some notion of effi-

ciency).
5In the context of logic discussed from the next section onwards, the term semantics is used in a

specific restricted manner that is compatible with its use here.

129 Chapter 6. Logic

An element p ∈ P is either a (valid) proof for a statement s ∈ S, or it is not.
This can be defined via a verification function

φ : S × P → {0, 1},

where φ(s, p) = 1 means that p is a valid proof for statement s.

Without strong loss of generality we can in this section consider

S = P = {0, 1}∗,

with the understanding that any string in {0, 1}∗ can be interpreted as a state-
ment by defining syntactically wrong statements as being false statements.

Definition 6.1. A proof system6 is a quadruple Π = (S,P , τ, φ), as above.

We now discuss the two fundamental requirements for proof systems.

Definition 6.2. A proof system Π = (S,P , τ, φ) is sound7 if no false statement
has a proof, i.e., if for all s ∈ S for which there exists p ∈ P with φ(s, p) = 1, we
have τ(s) = 1.

Definition 6.3. A proof system Π = (S,P , τ, φ) is complete8 if every true state-
ment has a proof, i.e., if for all s ∈ S with τ(s) = 1, there exists p ∈ P with
φ(s, p) = 1.

In addition to soundness and completeness, one requires that the function
φ be efficiently computable (for some notion of efficiency).9 We will not make
this formal, but it is obvious that a proof system is useless if proof verification is
computationally infeasible. Since the verification has to generally examine the
entire proof, the length of the proof cannot be infeasibly long.10

6.2.2 Examples

Example 6.1. An undirected graph consists of a set V of nodes and a set E of
edges between nodes. Suppose that V = {0, . . . , n − 1}. A graph can then be
described by the so-called adjacency matrix, an n×n-matrixM with {0, 1}-entries,

6The term proof system is also used in different ways in the mathematical literature.
7German: korrekt
8German: vollständig
9The usual efficiency notion in Computer Science is so-called polynomial-time computable which

we do not discuss further.
10An interesting notion introduced in 1998 by Arora et al. is that of a probabilistically checkable proof

(PCP). The idea is that the proof can be very long (i.e., exponentially long), but that the verification
only examines a very small random selection of the bits of the proof and nevertheless can decide
correctness, except with very small error probability.

6.2. Proof Systems 130

where Mi,j = 1 if and only if there is an edge between nodes i and j. A graph
with n nodes can hence be represented by a bit-string of length n2, by reading
out the entries of the matrix row by row.

We are now interested in proving that a given graph has a so-called Hamilto-
nian cycle, i.e., that there is a closed path from node 1 back to node 1, following
edges between nodes, and visiting every node exactly once. We are also inter-
ested in the problem of proving the negation of this statement, i.e., that a given
graph has no Hamiltonian cycle. Deciding whether or not a given graph has a
Hamiltonian cycle is considered a computationally very hard decision problem
(for large graphs).11

To prove that a graph has a Hamiltonian cycle, one can simply provide the
sequence of nodes visited by the cycle. A value in V = {0, . . . , n − 1} can be
represented by a bit-string of length ⌈log2 n⌉, and a sequence of n such numbers
can hence be represented by a bit-string of length n⌈log2 n⌉. We can hence define
S = P = {0, 1}∗.

Now we can let τ be the function defined by τ(s) = 1 if and only if |s| = n2

for some n and the n2 bits of s encode the adjacency matrix of a graph containing
a Hamiltonian cycle. If |s| is not a square or if s encodes a graph without a
Hamiltonian cycle, then τ(s) = 0.12 Moreover, we can let φ be the function
defined by φ(s, p) = 1 if and only if, when s is interpreted as an n × n-matrix
M and when p is interpreted as a sequence of n different numbers (a1, . . . , an)
with ai ∈ {0, . . . , n − 1} (each encoded by a bit-string of length ⌈log2 n⌉), then
the following is true:

Mai,ai+1 = 1

for i = 1, . . . , n− 1 and

Man,a1 = 1.

This function φ is efficiently computable. The proof system is sound because a
graph without Hamiltonian cycle has no proof, and it is complete because every
graph with a Hamiltonian cycle has a proof. Note that each s with τ(s) = 1 has
at least n different proofs because the starting point in the cycle is arbitrary.

Example 6.2. Let us now consider the opposite problem of proving the inex-
istence of a Hamiltonian cycle in a given graph. In other words, in the above
example we define τ(s) = 1 if and only if |s| = n2 for some n and the n2 bits
of s encode the adjacency matrix of a graph not containing Hamiltonian cycle.
In this case, no sound and complete proof system (with reasonably short and
efficiently verifiable proofs) is known. It is believed that no such proof system
exists.

11The best known algorithm has running time exponential in n. The problem is actually NP-
complete, a concept that will be discussed in a later course on theoretical Computer Science.

12Note that τ defines the meaning of the strings in S , namely that they are meant to encode graphs
and that we are interested in whether a given graph has a Hamiltonian cycle.

131 Chapter 6. Logic

Example 6.3. Let again S = P = {0, 1}∗, and for s ∈ {0, 1}∗ let n(s) de-
note the natural number whose (standard) binary representation is s, with the
convention that leading 0’s are ignored. (For example, n(101011) = 43 and
n(00101) = 5.) Now, let τ be the function defined as follows: τ(s) = 1 if and
only if n(s) is not a prime number. Moreover, let φ be the function defined
by φ(s, p) = 1 if and only if n(s) = 0, or if n(s) = 1, or if n(p) divides n(s) and
1 < n(p) < n(s). This function φ is efficiently computable. This is a proof system
for the non-primality (i.e., compositeness) of natural numbers. It is sound be-
cause every s corresponding to a prime number n(s) has no proof since n(s) 6= 0
and n(s) 6= 1 and n(s) has no divisor d satisfying 1 < d < n(s). The proof sys-
tem is complete because every natural number n greater than 1 is either prime
or has a prime factor q satisfying 1 < q < n (whose binary representation can
serve as a proof).

Example 6.4. Let us consider the opposite problem, i.e., proving primality of
a number n(s) represented by s. In other words, in the previous example we
replace “not a prime” by “a prime”. It is far from clear how one can define a
verification function φ such that the proof system is sound and complete. How-
ever, such an efficiently computable function φ indeed exists. Very briefly, the
proof that a number n(s) (henceforth we simply write n) is prime consists of
(adequate representations of):

1) the list p1, . . . , pk of distinct prime factors of n− 1,

2) a (recursive) proof of primality for each of p1, . . . , pk
13

3) a generator g of the group Z∗
n.

The exact representation of these three parts of the proof would have to be made
precise, but we omit this here as it is obvious how this could be done.

The verification of a proof (i.e., the computation of the function φ) works as
follows.

• If n = 2 or n = 3, then the verification stops and returns 1.14

• It is tested whether p1, . . . , pk all divide n − 1 and whether n − 1 can be
written as a product of powers of p1, . . . , pk (i.e., whether n − 1 contains
no other prime factor).

• It is verified that
gn−1 ≡n 1

and, for all i ∈ {1, . . . , k}, that

g(n−1)/pi 6≡n 1.

13recursive means that the same principle is applied to prove the primality of every pi, and again
for every prime factor of pi − 1, etc.

14One could also consider a longer list of small primes for which no recursive primality proof is
required.

6.2. Proof Systems 132

(This means that g has order n− 1 in Z∗
n).

• For every pi, an analogous proof of its primality is verified (recursively).

This proof system for primality is sound because if n is not a prime, then there
is no element of Z∗

n of order n− 1 since the order of any element is at most ϕ(n),
which is smaller than n− 1. The proof system is complete because if n is prime,
then GF (n) is a finite field and the multiplicative group of any finite field, i.e.,
Z∗
n, is cyclic and has a generator g. (We did not prove this statement in this

course.)15

6.2.3 Discussion

The examples demonstrate the following important points:

• While proof verification must be efficient (in some sense not defined here),
proof generation is generally not (or at least not known to be) efficient. For
example, finding a proof for the Hamiltonian cycle example requires to
find such a cycle, a problem that, as mentioned, is believed to be very
hard. Similarly, finding a primality proof as discussed would require the
factorization of n − 1, and the factoring problem is believed to be hard.
In general, finding a proof (if it exists) is a process requiring insight and
ingenuity, and it cannot be efficiently automated.

• A proof system is always restricted to a certain type of mathematical state-
ment. For example, the proof system of Example 6.1 is very limited in the
sense that it only allows to prove statements of the form “graph G has a
Hamiltonian cycle”.

• Proof verification can in principle proceed in very different ways. The
proof verification method of logic, based on checking a sequence of rule
applications, is (only) a special case.

• Asymmetry of statements and their negation: Even if a proof system exists
for a certain type of statements, it is quite possible that for the negation of
the statements, no proof system (with efficient verification) exists.

6.2.4 Proof Systems in Theoretical Computer Science *

The concept of a proof system appears in a more concrete form in theoretical computer
science (TCS), as follows. Statements and proofs are bit-strings, i.e., S = P = {0, 1}∗.
The predicate τ defines the set L ⊆ {0, 1}∗ of strings that correspond to true statements:

15Actually, a quite efficient deterministic primality test was recently discovered by Agrawal et al.,
and this means that primality can be checked without a proof. In other words, there exists a trivial
proof system for primality with empty proofs. However, this fact is mathematically considerably
more involved than the arguments presented here for the soundness and completeness of the proof
system for primality.

133 Chapter 6. Logic

L = {s | τ (s) = 1}.

Conversely, every subset L ⊆ {0, 1}∗ defines a predicate τ . In TCS, such a set L of strings
is called a formal language, and one considers the problem of proving that a given string
s is in the language, i.e., s ∈ L. A proof for s ∈ L is called a witness of s, often denoted as
w, and the verification function φ(s,w) defines whether a string w is a witness for s ∈ L.

One then considers the special case where the length of w is bounded by a polynomial
of the length of s and where the function φ must be computable in polynomial time, i.e.,
by a program with worst-case running time polynomial in the length of s. Then, the
important class NP of languages is the set of languages for which such a polynomial-
time computable verification function exists.

As mentioned in a footnote, a type of proof system of special interest are so-called
probabilistically checkable proofs (PCP).

An important extension of the concept of proof systems are so-called interactive
proofs.16 In such a system, the proof is not a bit-string, but it consists of an interaction
(a protocol) between the prover and the verifier, where one tolerates an immensely small
(e.g. exponentially small) probability that a verifier accepts a “proof” for a false state-
ment. The reason for considering such interactive proofs are:

• Such interactive proofs can exist for statements for which a classical (non-
interactive) proof does not exist. For example, there exists an interactive proof
system for the non-Hamiltonicity of graphs.

• Such interactive proofs can have a special property, called zero-knowledge, which
means that the verifier learns absolutely nothing (in a well-defined sense) during
the protocol, except that the statement is true. In particular, the verifier cannot
prove the statement to somebody else.

• Interactive proofs are of crucial importance in a large number of applications, es-
pecially if they have the zero-knowledge property, for example in sophisticated
block-chain systems.

6.3 Elementary General Concepts in Logic

The purpose of this section is to introduce the most basic concepts in logic in a
general manner, not specific to a particular logic. However, this section is best
appreciated by considering concrete examples of logics, in particular proposi-
tional logic and predicate logic. Without discussing such examples in parallel to
introducing the concepts, this section will be hard to appreciate. We will discuss
the general concepts and the concrete examples in parallel, going back and forth
between Section 6.3 and Sections 6.5 and 6.6.

16This topic is discussed in detail in the Master-level course Cryptographic Protocols taught by
Martin Hirt and Ueli Maurer.

6.3. Elementary General Concepts in Logic 134

6.3.1 The General Goal of Logic

A goal of logic is to provide a specific proof system Π = (S,P , τ, φ) for which
a very large class of mathematical statements can be expressed as an element
of S.

However, such a proof system Π = (S,P , τ, φ) can never capture all possible
mathematical statements. For example, it usually does not allow to capture
(self-referential) statements about Π, such as “Π is complete”, as an element of
S. The use of common language is therefore unavoidable in mathematics and
logic (see also Section 6.7).

In logic, an element s ∈ S consists of one or more formulas (e.g. a formula,
or a set of formulas, or a set of formulas and a formula), and a proof consists of
applying a certain sequence of syntactic steps, called a derivation or a deduction.
Each step consists of applying one of a set of allowed syntactic rules, and the
set of allowed rules is called a calculus. A rule generally has some place-holders
that must be instantiated by concrete values.

In standard treatments of logic, the syntax of S and the semantics (the func-
tion τ) are carefully defined. In contrast, the function φ, which consists of ver-
ifying the correctness of each rule application step, is not completely explicitly
defined. One only defines rules, but for example one generally does not define
a syntax for expressing how the place-holders of the rules are instantiated.17

6.3.2 Syntax, Semantics, Interpretation, Model

A logic is defined by the syntax and the semantics. The basic concept in any logic
is that of a formula18.

Definition 6.4. The syntax of a logic defines an alphabet Λ (of allowed symbols)
and specifies which strings in Λ∗ are formulas (i.e., are syntactically correct).

The semantics (see below) defines under which “conditions” a formula is
true (denoted as 1) or false (denoted as 0).19 What we mean by “conditions”
needs to be made more precise and requires a few definitions.

Some of the symbols in Λ (e.g. the symbols A and B in propositional logic
or the symbols P and Q in predicate logic) are understood as variables, each of
which can take on a value in a certain domain associated to the symbol.

17In a fully computerized system, this must of course be (and indeed is) defined.
18German: Formel
19There are logics (not considered here) with more than two truth values, for example a logic with

confidence or belief values indicating the degree of confidence in the truth of a statement.

