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About the notes: These notes serve as written reference for the topics not covered by
the papers that are handed out during the lecture. The material contained therein
is thus a strict subset of what is relevant for the final exam.

This week, the notes treat an information-theoretically secure (distributed) commitment pro-
tocol that can be used to instantiate last week’s generic actively secure MPC protocol. The
notes also treat an impossibility proof for actively secure MPC with ¢ > n /2.

10.1 Information-Theoretically Secure Commitment Protocol

In this section we provide a homomorphic, information-theoretically secure commitment scheme
(cf. Section 9.2) along with commitment multiplication (CMP) and transfer (CTP) protocols.
The way around the fact that there can be no commitment scheme that is both information-
theoretically binding and hiding is to construct a distributed scheme that is based on Shamir’s
sharing scheme. Instantiating our generic protocol with this commitment scheme results in (a
variant of) the protocol by [BGWSS].

In the following we assume that the number of corrupted parties is ¢ < n/3. We start by
constructing protocols CoMMIT and OPEN, which allow some dealer D to (w.r.t. all players)
commit to a value and to open it, respectively. Recall that an execution of them can be rejected
by the players. We require that they satisfy the following properties:

e Consistency: If COMMIT or OPEN is rejected by some honest player, all honest players do
so. If D is honest, no honest player rejects.

e Uniqueness: If COMMIT is successful, D is committed to some value, i.e., there exists only
one value that is accepted in OPEN.

e Privacy: If D is honest an commits to some value, then, in CoMMIT, the adversary obtains
no information about this value.

It is easily seen that these properties imply that the scheme is perfectly binding and hid-
ing.

Commit. Recall that the players want to evaluate an arithmetic circuit over a finite field F
of size ¢ > n (cf. Section 7.2). The main idea is that the dealer D, to commit to some value s,
chooses a random polynomial g(z) of degree at most ¢ with ¢g(0) = s and sends the commit



Distributed Commit Protocol CoMMIT

1. Distribution: To share secret s, dealer D chooses a random bivariate polynomial
of (single) degree at most ¢

¢
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and sends the polynomials h;(x) := f(x,«;) and k;(y) := f(a,y) to P; for
1=1,...,n.

2. Consistency checks: For 1 < i,5 < n: Players (P;, P;) verify that h;(o;) =
kj(ci). To that end, P; sends the value h;(c;) to P;, who compares the received
value to k;(c;). Each player P; broadcasts a complaint for all coordinates (4, j)
where the values do not match. Dealer D must answer such complaints by
broadcasting f(ay, aj).

3. Accusations: If, in step 2, dealer D broadcasts values that are not consistent
with polynomials h;(x) and k;(y) of some player P;, this player accueses the
dealer via broadcast. The dealer must answer such an accusation by broad-
casting both h;(z) and k;(y). If the broadcasted polynomials are inconsis-
tent with the polynomials of some other player P; (i.e., hi(c;) # kj(as) or
ki(coj) # hj(a;)), this player also accuses the dealer. This continues until no
new players accuse D.

4. Determine commit share: If, in step 3, dealer D was accused by more than ¢
players, refused to answer any of the accusations, or the answers contradicted
each other, he is disqualified.

Otherwise, each player computes his commit share s; = k;(0) as the output of
the protocol, where, if P; accused D, he uses the polynomial broadcast by D.
The dealer’s output is the polynomial g(z) = f(x,0).

Figure 1: Distributed commit protocol secure against up to t < n/3 corrupted players.

share s; := g(a;) to P; for each i. Furthermore, D somehow “proves” that the commit shares
indeed lie on a polynomial of degree at most ¢t. The protocol is given in Figure 1.

Open. Assume the dealer D is committed to some value s by a polynomial g(z) and each
player holds the share s; = g(«;). To open the commitment, D first broadcasts g(x) (by
broadcasting the coefficients). Each player P; then checks if his share lies on the broadcast
polynomial and accuses the dealer via broadcast if this is not the case. If at most ¢ players
accuse D, the opening is accepted. The protocol is depicted in Figure 2.

Let us turn to the analysis of the commitment scheme. It is straight-forward to verify that the
presented commitment scheme satisfies the consistency property. Also, it is easily seen that the
presented commitment scheme maintains privacy: At the beginning, the adversary gets up to ¢
pairs of polynomials (h;(x), ki(y)), which give no information about the secret (cf. Slides 10).
The reader can easily verify that, after this, only values are revealed that the adversary already
knows.

To show that the uniqueness property is satisfied, suppose some dealer D is not disqualified.
After step 3, the polynomials of all honest players are pairwise consistent. Consider the polyno-
mial f/(z,y) defined by the polynomials h;(x), k;(y) of the ¢ + 1 honest players with the lowest



Distributed Open Protocol OPEN

Starting point: Dealer D is committed to some value s by a polynomial g(z) of
degree at most ¢ and each player P; holds the commit share s; = g(«;).
Goal: Every player learns s.
1. Dealer D broadcasts g(z).
2. Every player P; checks that his share lies on the broadcasted polynomial, i.e.,
whether s; = ¢/(a;). If not, P; accuses D via broadcast.
3. If more than t players accused D the protocol is rejected. Otherwise the opened
value is s = ¢/(0).

Figure 2: Distributed open protocol secure against up to t < n/3 corrupted players.

indices. Moreover, consider the polynomial h;(x) of some other honest player P;. It is consis-
tent with the polynomials k;(y) of the ¢ + 1 first players. Thus h;(z) = f'(x, ;). Similarly,
ki(y) = f'(aj,y). It follows that the polynomials of all honest players lie on a well-defined
polynomial f’(z,y) of degree at most t. In particular, the shares k;(0) lie on a polynomial
g(z) = f'(x,0) of degree at most ¢ and the secret is uniquely defined.

Suppose now that a corrupted dealer broadcasts a polynomial ¢'(x) # g(x) in the open protocol.
Since they must disagree in at least n — t positions «;, there will be at least n — 2t > t + 1
honest players accusing the dealer, who will thus be disqualified.

Commitment transfer protocol. Such a protocol is discussed in Exercise 11.1.

Commitment multiplication protocol. As a final step, we will construct a commitment
multiplication protocol that allows a player committed to two values a,b to commit to their
product ¢ = ab (see Figure 3). The protocol is generic, that is, it works with any commitment
scheme (also cryptographic ones). It requires, however, that ¢ < n/3. We defer its analysis to
Exercise 11.2.

Commitment Multiplication Protocol CMP

Starting point: Dealer D is committed to two values a and b.
Goal: D is committed to the product ¢ = ab of the two values.

1. D computes ¢ = ab and commits to it.

2. D uses the CSP for both for a and b, which results in every player P; being
committed to two shares a; and b;.

3. D uses the CSP for c¢. However, he uses a polynomial of degree 2t that is the
product of the two polynomials used to share a and b. P; is now committed
to ¢;.

4. Fach player P; checks whether ¢; = a;b;. If not, he opens the commitments to
the three values, thus proving that D has cheated. If no player provides such
a proof, the commitment to ¢ from step 1 is accepted.

Figure 3: Commitment multiplication protocol secure against up to t < n/3 corrupted players.

10.2 Impossibility of Actively Secure MPC with ¢ > n/2

In this section we prove that no MPC protocol can be secure against an adversary corrupting
half of the players or more. Similarly to the impossibility proof for information-theoretically



secure MPC against a passive attacker corrupting a majority of the players (cf. Section 7.3), we
first show that there can be no protocol that securely computes the function f(x4,xp) = zaAxp
between Alice and Bob (i.e., with ¢ = 1 and n = 2). Then, the general case follows analogously
(and is not repeated here). The attack provided below is efficient and thus precludes the
existence of cryptographically secure protocols as well.

Consider a shortest (in terms of the number of messages sent) protocol between Alice and Bob
that securely evaluates f and assume w.l.o.g. that Alice sends the last message. Modify said
protocol s.t. Alice does not send that last message. Clearly, in the modified protocol, Alice still
learns the output. Moreover, neither Alice’s nor Bob’s security can be violated by Alice not
sending the last message. Thus, since the modified protocol is shorter and the original one was
a shortest secure one, Bob cannot learn the output of f in the modified protocol (as, otherwise,
the modified protocol would be secure). This implies that Alice, by dropping the last message
in the protocol, can break the security of the original protocol, which is a contradiction.

Note that this proof can be generalized to protocols with varying number of rounds: Alice
simply guesses in which of the at most polynomially many rounds she has to stop in order to
break the protocol, which still gives her non-negligible success probability.
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