
ETH Zurich, Department of Computer Science
SS 2021

Prof. Ueli Maurer
Dr. Martin Hirt

Konstantin Gegier
Chen-Da Liu Zhang

Cryptographic Protocols

Notes 9

Scribe: Sandro Coretti (modified by Chen-Da Liu Zhang and Konstantin Gegier)

About the notes: These notes serve as written reference for the topics not covered by
the papers that are handed out during the lecture. The material contained therein
is thus a strict subset of what is relevant for the final exam.

This week, the notes treat a generic MPC protocol secure against active adversaries as well as an
instantiation thereof leading to cryptographic security against an (efficient) attacker corrupting
up to t < n/2 players. Next week, we discuss a second instantiation that results in information-
theoretic security.

9.1 Actively Secure Multi-Party Computation: Basic Idea

In this section we modify the protocol secure against passive adversaries from Section 7.2 to
provide security against actively corrupted players. We will do so in a generic fashion and
then provide two instantiations which lead to cryptographic and information-theoretic security,
respectively.

There are three forms of active misbehavior: divulging secret information, not sending values,
and sending incorrect values. In the following we will incrementally improve the passive protocol
to be secure against each of these forms.

Divulging secret information. In our protocol, the adversary could, e.g., use non-random
coefficients to share values, or he could send values he is not supposed to send. Clearly, the
worst-case scenario is if up to t players publish all of their information. But since the adversary
already knows this information and honest players must ignore it, this kind of active corruption
does not pose a problem.

Not sending values. There are three points in the protocol at which players can refuse to
send values:

1. While sharing a value, a corrupted dealer might not send a share to some of the players.

2. In the multiplication protocol, a corrupted player might not send his product share to
some of the players.

3. During reconstruction a corrupted player might not send his share to some of the players.



Case 3 is easy to solve: As n > 2t, an honest player receives at least n− t ≥ t+ 1 shares, which
suffices to reconstruct a polynomial of degree at most t.

In Case 1, a player who did not receive a share accuses the dealer publicly, using broadcast.
Then, the accused must broadcast the corresponding share. If he refuses to comply, he is
disqualified and a default value is assumed as his input. This can be done using a degree-0
Shamir sharing, i.e., a polynomial that evaluates to this default value at every point. Note
that the publication of the share using broadcast does not constitute a problem as the value
broadcast is already known to the adversary (either the dealer is corrupted, or the accusing
player is corrupted and has already received the value from the dealer).

To deal with Case 2, one first proceeds as in Case 1, i.e., by accusation and broadcast. However,
in this case, if the accused player refuses to broadcast the necessary value, the remaining players
cannot just assume a default value since they need his product share di in the multiplication
protocol.

There is a number of different ways to handle this:

• The entire protocol is repeated without the fallible player (decreasing both the number of
total players and the number of cheating players by one. Since the fault occurred during
a multiplication, no players have received information about the output yet.

• The factor shares ai and bi of the cheating player (and only those) are reconstructed.
Then, each player can use a degree-0 sharing of the product share di = aibi in remainder
of the computation. The cheater is, however, not eliminated. How an uncooperative
player’s share can be reconstructed by the remaining players is discussed in Exercise 10.1.

Sending wrong values. After having introduced measures that make our protocol secure
against players who refuse to send certain values, it now remains to deal with players who send
wrong values. The idea will be to make sure that the sending of incorrect values is detected by
honest parties who then treat this as if no value had been sent (using the solutions described
above).

Roughly speaking, to ensure that players cannot send incorrect values without being detected,
every player will be committed to every value he knows at any given time. Whenever a player
is supposed to send some value to some other player, the commitment must be transferred to
the recipient. When a value is to be broadcast, the sender must open the commitment to all
players. Finally, whenever some player performs some internal computation, he commits to the
result and proves (e.g., using a general zero-knowledge proof of knowledge) that the result was
computed correctly.

Depending on the level of security one wants to achieve, different commitment schemes are
used: If one desires computational security only, one uses normal, cryptographically secure
commitment schemes like, e.g., Pedersen or ElGamal Commitments (see Section 9.3). To obtain
information-theoretic security, one uses special distributed commitment schemes (which will be
introduced next week).

9.2 Generic Actively Secure MPC

Motivated by the discussion in the previous section, we postulate a commitment scheme with
the following sub-protocols:

• Commit: A player can commit to some value (w.r.t. to all players).

• Open: A player committed to some value can open the commitment to a single or to all
players.



Commitment Sharing Protocol

Starting point: Dealer is committed to some value s.
Goal: Every player has a share of s and is committed to it.

1. The dealer chooses the random coefficients used in the secret sharing scheme
and commits to them.

2. Each player (locally) computes the commitments to all shares (using the
homomorphic property).

3. For every player, the dealer transfers the commitment to the share corre-
sponding to that player using the CTP.

Figure 1: The commitment sharing protocol.

• CTP (Commitment Transfer Protocol): A commitment of some player to some value can
be transferred to some other player.

• CMP (Commitment Multiplication Protocol): Two commitments of some player to two
values can be transformed into a commitment of the product of these two values.

Recall that the basic idea is to detect the sending of wrong values and treat it as if none had
been sent. Therefore, it is imperative that for each of the sub-protocols, the honest parties are
in agreement whether it was executed successfully or not.

Finally, we require that the scheme be homomorphic. That is, from two commitments of some
player to two values, one can compute a commitment to the sum of these two values (without
communication).

The operations Commit and Open are part of any commitment scheme, except that now a
player commits to value w.r.t. to all players (instead of just a single one). The Open protocol
must allow a single player to open his commitment either to a single or to all players.

The protocol to transfer commitments will be used whenever some party is supposed to send
a value to some other party in the passive protocol. If the transfer protocol is successful, the
recipient will be committed to the same value (w.r.t. all players) and know how to open the
commitment to that value.

Finally, the protocol for commitment multiplication allows some player already committed to
two value to commit to the product of these two values.

We are now ready to present the generic protocol, which we later instantiate with cryptograph-
ically and information-theoretically secure commitment schemes. First, we construct (from the
postulated commitment scheme) a commitment sharing protocol (CSP, see Figure 1), which
allows a dealer committed to some value to “share” this value in such a way that every player
ends up being committed to his share.

The actively secure MPC protocol is outlined in Figure 2.

9.3 Cryptographic Security

Given the considerations above, to obtain cryptographic security, it suffices to use some ho-
momorphic commitment scheme that satisfies the requirements given in Section 9.2. Such an
instantiation results in (a variant of) the protocol by [GMW87]. If the scheme is of type H
(e.g., Pedersen Commitments), then the secrecy of the resulting protocol holds unconditionally.
Conversely, if the scheme is of type B (e.g., ElGamal Commitments), then the correctness of
the resulting protocol is unconditional.



Actively Secure MPC

Whenever some other player refuses to execute any of the steps below, proceed
as described in Section 9.1 (sending wrong values).

Input

Each player gives input by committing to it and then executing the CSP to
commit all other players to their share of the input.

Addition Gates (and Linear Functions)

Two values are added by having each player commit to the sum of his two
shares using the homomorphic property of the commitment scheme (i.e., with-
out communication).

Multiplication Gates

To multiply two values, each player first uses the CMP to commit to the prod-
uct of his shares. Then he uses to the CSP to share this value. Finally, the
players compute the product using Lagrange interpolation (as in the passive
protocol), which is a linear function and can be evaluated using the homomor-
phic property.

Output

To reconstruct a value towards some player, all other players open their com-
mitment to the share of that value to that player. Since there are at least t+ 1
honest players, the player receives enough shares.

Figure 2: Actively secure MPC protocol tolerating at most t < n/2 corrupted players (or less if the
commitment scheme requires a lower threshold).

References

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.


