
ETH Zurich, Department of Computer Science
SS 2021

Prof. Ueli Maurer
Dr. Martin Hirt

Konstantin Gegier
Chen-Da Liu Zhang

Cryptographic Protocols

Notes 7

Scribe: Sandro Coretti (modified by Chen-Da Liu Zhang and Konstantin Gegier)

About the notes: These notes serve as written reference for the topics not covered by
the papers that are handed out during the lecture. The material contained therein
is thus a strict subset of what is relevant for the final exam.

This week, the notes treat sharing schemes, an MPC protocol that is information-theoretically
secure against a passive adversary corrupting up to t < n/2 of the players, and a proof that
there exist no information-theoretically secure protocols for t ≥ n/2.

7.1 Sharing Schemes

A secret-sharing scheme allows a dealer D to distribute a secret s among a set of players
P = {P1, . . . , Pn} such that only certain qualified subsets of players can reconstruct the se-
cret, while other subsets of players obtain no information about the secret. A secret-sharing
scheme is usually specified by the so-called access structure Γ, the collection of qualified player
subsets1.

Definition 7.1. A secret-sharing scheme for access structure Γ is a pair (share, reconstruct) of
protocols with the following properties:

• Correctness: 1. after share(s), there is a unique value s′ that can be reconstructed, where
s′ = s if the dealer is honest.
2. Any S ∈ Γ can execute reconstruct to obtain the value s′.

• Privacy: after share(s), any S /∈ Γ have no information about s.

A t-out-of-n secret-sharing scheme is a secret-sharing scheme for access structure Γ := {S ⊆
P : |S| > t}. The most famous secret-sharing scheme is Shamir’s Sharing Scheme [Sha79]
(cf. Section 7.1.2). It uses polynomials to obtain the desired properties. Before presenting the
scheme, we first take a look at Lagrange interpolation.

7.1.1 Lagrange Interpolation

Consider a field F and n points (α1, s1), . . . , (αn, sn) (for distinct αi). Lagrange interpolation
can be used to find the unique polynomial over F of degree at most n − 1 that contains these

1The access structure Γ must be monotone, i.e., if S ∈ Γ and S′ ⊇ S, then S′ ∈ Γ.

points: For i = 1, . . . , n, consider the polynomial

`i(x) =

n∏
j=1
j 6=i

x− αj

αi − αj
.

Clearly, `i(αi) = 1 and `i(αj) = 0 for j 6= i. Therefore, a polynomial that goes through the
points (αi, si) for i = 1, . . . , n is given by

g(x) =

n∑
i=1

`i(x) · si.

The polynomial g can be shown to be unique. Moreover, note that the value of g at some fixed
position is a linear function of the si.

7.1.2 Shamir’s Sharing Scheme

Consider a finite field F of size greater than n.2 Assume there is a unique, fixed, and publicly
known value αi ∈ F \ {0} associated with every player Pi. The dealer D chooses a random
polynomial p(·) over F and of degree at most t such that p(0) = s. This can be done by
choosing r1, . . . , rt at random from F and defining

p(x) := s+ r1x+ r2x
2 + . . .+ rtx

t.

Then, for i = 1, . . . , n, he sends the value si := p(αi), called the ith share, to player Pi. All
shares together are called a sharing of s. Sometimes, we denote a sharing of s by [s].

Given any t+1 shares, one can compute the secret s using Lagrange interpolation. Furthermore,
one can show that up to t shares give no information about s.

Shamir sharings are linear. That is, the sharing s = (s1, . . . , sn)
T

can be obtained by multiplying

the vector r = (s, r1, . . . , rt)
T

consisting of the secret and the random coefficients by a matrix M
(which the reader can find as an exercise). That is, s = M · r. From two sharings s = Mr of s
and s′ = Mr′ of s′, a sharing of the sum s+ s′ can be computed by having each player adding
his shares. This is due to the fact that s + s′ = Mr + Mr′ = M(r + r′) and thus the secret in
s + s′ is s+ s′ (since M is injective).

7.2 Passively Secure Multi-Party Computation

In this section we present a simplified version of the MPC protocol by [BGW88], which provides
security against up to t < n/2 passively corrupted players. This is optimal in the sense that
there cannot exist a protocol with these properties that allows to evaluate an arbitrary function
and tolerates more passively corrupted players (cf. Section 7.3).

The function that the players want to evaluate must be given as an arithmetic circuit over a
finite field F of size q > n, consisting of addition and multiplication gates. We will denote the
player set by P = {P1, . . . , Pn}. Without loss of generality we assume that player Pi holds
input xi ∈ F.

The basic idea of the protocol is the following: At the beginning, every player shares his input
using Shamir’s sharing scheme. Then, in a gate-by-gate fashion, the players will evaluate every
gate. Here, evaluate means that if the inputs to some gate are shared among the players, then,

2Recall that n denotes the number of players.

Passively Secure MPC

Input

To share his input xi, each player Pi chooses random polynomial f(x) of degree
at most t such that f(0) = xi. Then, for j = 1, . . . , n, he sends xij := f(αj) to Pj .

Addition Gates (and Linear Functions)

Each player Pi starts out with the shares ai and bi of the inputs to the gate a
and b, respectively. He computes a share ci of c = a+ b by adding his shares, i.e.,
ci = ai + bi.

Multiplication Gates

Each player Pi starts out with the shares ai and bi of the inputs to the gate a and
b, respectively. He computes a share ci of c = a · b by as follows:

1. Compute di := ai · bi.
2. Compute a Shamir sharing (di1, . . . , din) of di.

3. For j = 1, . . . , n: Send share dij to player Pj .
For j = 1, . . . , n: Let dji be share of dj = aj · bj received from player Pj .

4. Compute share of c = a · b as

ci :=

n∑
j=1

wjdji where wj =

n∏
k=1
k 6=j

αk

αk − αj
.

Output

To reconstruct a value a, each player Pi sends his share ai to all players. Then, he
uses Lagrange interpolation to compute a from shares aj received by players Pj .

Figure 1: Passively secure MPC protocol.

after the evaluation of the gate, the output of the gate is shared among the players. Once the
last gate is evaluated, the players reconstruct the output using Lagrange interpolation. The full
protocol is depicted in Figure 1.

Since it is clear from the description given in Section 7.1 how the sharing and reconstruction
phases work, we now focus on how to evaluate addition and multiplication gates.

Evaluating addition gates is easy as already pointed out in Section 7.1.2: Each player just adds
his shares of the summands to obtain a share of the sum. This can obviously be done without
communication. Moreover, it easy to see that this argument extends to any linear function, not
just addition.

Evaluating multiplication gates is somewhat more challenging. Suppose that from two sharings
[a] = (a1, . . . , an) and [b] = (b1, . . . , bn) the players wish to compute a sharing [c] = (c1, . . . , cn)
of the product c = a ·b. Following the same approach as with addition, one might be tempted to
simply have each player Pi compute the product di = ai · bi of his two shares. However, now the
values di lie on a polynomial of degree 2t, which implies that the players could only compute
one multiplication before they would become unable to reconstruct the sharing. Moreover, the
product polynomial is no longer random, which violates privacy.

Therefore, we are forced to take a different approach. Let f(x) and g(x) denote the polynomials
(of degree at most t) used to share a and b, respectively. Consider the product polynomial

h(x) := f(x) · g(x), which has degree at most 2t. Clearly, we have h(0) = c and h(αi) = di
for i = 1, . . . , n. That is, since n > 2t, the points (αi, di) define the polynomial h(x). Hence,
Lagrange interpolation (cf. Section 7.1.1) can be used to compute

c = h(0) =

n∑
i=1

wi · di where wi = `i(0) =

n∏
j=1
j 6=i

αj

αj − αi
.

Thus, the product c can be expressed as a linear combination L of the values di. All one needs
to do now is to come up with a way to evaluate L on the inputs di. But we already know how
to securely evaluate linear functions: Each player Pi shares his input di and applies L to his
shares. At this point the players have a sharing (of degree t) of c.

Analysis

The correctness of the protocol can easily be verified since we consider passive adversaries
only.

In order prove that the protocol is private, one needs to show that the adversary, until before the
reconstruction phase, does not obtain any information on the inputs of uncorrupted parties or
intermediate results. During reconstruction the adversary only learns information he is allowed
to know according to the specification.

In the protocol there are three places in which the adversary might potentially obtain unautho-
rized information. It is easily seen, however, that privacy is not violated:

• When an honest party shares a value (either an input or a product share), it uses fresh
randomness and thus the shares of the corrupted parties are statistically independent of
the shared value.

• Local computation obviously does not violate privacy.

• When reconstructing, only players who are supposed to learn the output receive shares by
honest players. Thus, privacy is maintained.

7.3 Impossibility for t ≥ n/2

In order to show the impossibility of information-theoretically secure MPC in the presence of an
attacker corrupting at least n/2 of the parties, we first show that there exists no such protocol
for the case t = 1 and n = 2; then, we reduce the general case to this base case. The proof
below excludes only perfectly secure protocols, but it can be generalized to protocols with a
negligible error.

Consider two parties Alice and Bob that hold values xA and xB, respectively, and wish to
compute f(xA, xB) = xA ∧ xB. Moreover, consider an arbitrary protocol between the two.
Then, the transcript of their interaction is a function T (xA, rA, xB, rB), where rA and rB are
the random bits used by their protocols. Firstly, note that if Bob’s input is xB = 0, then the
transcript must contain no information about Alice’s input xA. This means that the random
variables T (0, RA, 0, rB) and T (1, RA, 0, rB) for random RA must be distributed identically for
all rB, as otherwise Bob could infer information from T . Secondly, if Bob’s input is xB = 1,
then the transcript must contain full information about Alice’s input xA. That is, the random
variables T (0, RA, 1, rB) and T (1, RA, 1, rB) must have disjoint supports as otherwise Alice may
not be able to infer the correct output.

Consider now a particular execution resulting in transcript T = T (xA, rA, xB, rB). To determine
xB, for both b ∈ {0, 1}, Alice now checks (by exhaustive search) for how many r′A she would have
obtained T by running the protocol with xA = b, randomness r′A, and the answers from Bob as
in T .3 If the number is the same for both b ∈ {0, 1}, then the transcript contains no information
about her input, and, therefore, Bob’s input must be xB = 0. If the number is different, then
the transcript does contain information about her input, and, therefore, xB = 1.

Consider now the general case with t ≥ n/2 and assume there exists a protocol for securely
evaluating any function f among the n parties. This means that there exist two sets M1 and
M2 of tolerable passively corrupted players with M1 ∪M2 = P. W.l.o.g. assume P1 ∈ M1

and P2 ∈M2. A protocol that allows to securely compute the function f(x1, . . . , xn) = x1 ∧ x2
among the n players can be used by Alice and Bob to compute the ∧-function of their inputs:
Alice simulates all players in M1 and Bob those in M2. This contradicts the impossibility
above.

Note that the above attack is not efficient, and therefore does not rule out cryptographically
secure protocols.

References

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

3Alice can make that determination for each pair (b, r′A) by running her protocol on input xA = b and
randomness r′A using Bob’s answers from T until either the her protocol ends or one of her messages is different
from the corresponding one in T .

