
ETH Zurich, Department of Computer Science
SS 2021

Prof. Ueli Maurer
Dr. Martin Hirt

Konstantin Gegier
Chen-Da Liu Zhang

Cryptographic Protocols

Notes 3

Scribe: Sandro Coretti (modified by Chen-Da Liu Zhang and Konstantin Gegier)

About the notes: These notes serve as written reference for the topics not covered by
the papers that are handed out during the lecture. The material contained therein
is thus a strict subset of what is relevant for the final exam.

This week, the notes discuss the definition of (perfect) zero-knowledge and a proof that the
three-move protocols we have encountered so far (graph isomorphism, Fiat-Shamir, Guillou-
Quisquater, Schnorr) are perfectly zero-knowledge [Mau15, Theorem 2].

3.1 Definition of Zero-Knowledge

Intuitively, an interactive proof (P, V) between a prover P and verifier V is zero-knowledge if
any (poosibly dishonest) verifier V ′, after interacting with P , has no more information than
before executing the protocol. This is captured by the notion of a simulator S that reproduces
V ′’s view in the proof without actually communicating with P . One can hence argue that if V ′

thinks the protocol execution with P might be of some kind of usefulness for V ′, then V ′ could
achieve exactly the same without talking to P (namely, by the simulation).

More precisely, consider the following two random experiments, the real protocol execution and
the simulation. To differentiate between the two experiments we use P̂ to denote probabilities
in the second random experiment.

1. Prover P interacts with V ′ on common input z; let U denote the random variables corre-
sponding to the transcript and let PU denote its distribution.

2. Simulator S, for input z, outputs a transcript. Again, let U denote the corresponding
random variable for the transcript and let P̂U denote its distribution.1

Definition 3.1. An interactive proof (P, V) is (perfectly) zero-knowledge (ZK) if for every
efficient V ′ there exists an efficient2 simulator S, which on every instance z produces a transcript
U that is distributed identically to the transcript U in the actual interaction between P and V ′

(on common input z), i.e., such that
PU = P̂U .

1On the slide with the definition of zero-knowledge, the transcript is denoted as U and the simulated transcript
as U ′. Here, we use the same symbol (namely U) for both types of transcripts, and instead use different symbols
for the distribution (P vs. P̂).

2Efficient is usually interpreted as expected polynomial time.

The interactive proof is honest-verifier zero-knowledge (HVZK) if the simulator exists for (the
honest) verifier V .

We point out that for the above definition to be precise, the mathematical type of a verifier V ′

must be defined. Most treatments specify this type as a probabilistic polynomial-time Turing
machine (PPT). Such technicalities could actually be avoided and are not discussed in this
course.

In this course, and in almost all cases in the literature, when proving the zero-knowledge
property of a protocol, there is a single simulator S (with access to the verifier V ′ as an oracle)
which is able to simulate the transcript. This is referred to as black-box simulation.

Definition 3.2. An interactive proof (P, V) is (perfectly) black-box zero-knowledge (BB-ZK)
if there exists an efficient simulator S, with rewinding3 oracle access to the verifier V ′, for which
the condition of the previous definition holds.

3.2 Some Relevant (Conditional) Probability Distributions

We discuss the relevant (conditional) probability distributions occurring in the later analyses.
Since the distributions generally do not themselves constitute a random experiment but should
rather only be understood as the mathematical objects of (conditional) probability distributions,
we denote them by a small letter p. We denote as a superscript the object (P , V , or V ′) that
determines the distribution.

• pPT denotes the prover P ’s distribution in choosing the first protocol message T .

• pPR|TC denotes the prover P ’s distribution in choosing the reply R when given the first
protocol message T and the challenge C.

• pVC denotes the honest verifier’s distribution in choosing the challenge C (which is usually
the uniform distribution).

• pV
′

C|T denotes, for any (possibly dishonest) verifier V ′, the conditional distribution accord-
ing to which it chooses the challenge C after seeing the first message T .

3.3 Honest-Verifier Zero-Knowledge and c-Simulatability

The HVZK property mentioned above is perhaps not very interesting per se, but it is a useful
tool on the way to proving the (perfect) zero-knowledge property.

A crucial property, which all three-move protocols in this course satisfy, is c-simulatability:

Definition 3.3. A three-move protocol round of an interactive proof (P, V) with challenge space
C is c-simulatable4 if for every instance z and for any value c one can efficiently generate a triple
(t, c, r) with the same distribution as occurring in the protocol (between P and the honest V),
conditioned on the challenge being c, i.e., if the conditional distribution pTR|C is efficiently
samplable.

Note that we have
pTR|C(t, r, c) = pPT (t) · pPR|TC(r, t, c)

for all t, r, c. The basic idea of c-simulatability is that, while pPR|TC is not efficiently samplable

without knowledge of the secret x (which the real prover knows), the combined distribution

3Rewinding means that V ′ can, multiple times, be reset to an intermediate point of its computation. The
rewinding capability is essential.

4This is also called special HVZK in the literature.

pTR|C can nevertheless be efficiently samplable, namely by first choosing r uniformly at ran-
dom and then determining t such that the protocol’s verification equation is satisfied (for the
given c).

Lemma 3.1. A three-move c-simulatable protocol is HVZK.

Proof. The honest-verifier simulator simply chooses c ∈ C randomly according to the distribu-
tion pVC , and generates t and r according to pTR|C (which is possible due to the c-simulatable
property). Hence we have

P̂TCR(t, c, r) = pVC (c) · pPT (t) · pPR|TC(r, t, c) = PTCR(t, c, r),

showing that the distribution of the simulated transcript (T,C,R) is identical to the distribution
of the real-protocol transcript (T,C,R).

3.4 Proving the General Zero-Knowledge Property

Lemma 3.2. An HVZK three-move protocol (as discussed) with uniformly random challenge (by
an honest verifier) from a polynomially bounded challenge space C is (black-box) zero-knowledge.

Proof. Consider a potentially dishonest verifier V ′. The simulator S has black-box rewinding
access to V ′. This means that the simulator can repeatedly invoke V ′ to generate a challenge
c for a given first message t.

The simulator S creates a transcript as follows:

1. Generate a triple (t, c, r) according to the HVZK simulation.

2. Invoke V ′ with input t to obtain a challenge value; call it c.

3. If c = c, output the triple (t, c, r). Otherwise go to step 1 (and rewind V ′ to its start).

We need to show (1) that the distribution of the simulated transcript is correct (i.e., equal to
the distribution of the transcript generated in the real protocol execution) and (2) that the
simulator is efficient.

To prove the first claim, note that the transcript in the actual protocol execution between P
and V ′ is distributed according to

PTCR(t, c, r) = pPT (t) · pV ′

C|T (c, t) · pPR|TC(r, t, c).

We denote the random variables corresponding to an attempted simulation of a transcript (step 1
above) as T ′, C ′, and R′. The HVZK simulator outputs a transcript (t, c, r) with the distribution

P̂T ′C′R′(t, c, r) = pPT (t) · 1

|C|
· pPR|TC(r, t, c).

Then, in step 2 above, V ′ is invoked to generate a challenge value c, according to the distribution
pV

′

C|T (c, t). Let us denote by E the event that c = c (in step 3). The (partial) distribution of

(T ′, C ′, R′), and the event E occurring, is5

P̂T ′C′R′E(t, c, r) = pPT (t) · 1

|C|
· pPR|TC(r, t, c) · pV ′

C|T (c, t)

5P̂T ′C′R′E(t, c, r) denotes the probability that T ′ = t, C′ = c, R′ = r, and E occurs.

It is easy to see (by summing over all t, c, and r) that

P̂ (E) =
1

|C|
and hence that the distribution of the transcript (the first successful attempt) is

P̂TCR(t, c, r) =
P̂T ′C′R′E(t, c, r)

P̂ (E)
= pPT (t) · pPR|TC(r, t, c) · pV ′

C|T (c, t),

which is equal to PTCR(t, c, r), the transcript distribution in the real protocol execution.

To prove the second claim, namely that the simulator is efficient, note that in each attempt,
the probability of creating a valid transcript is P̂ (E) = 1

|C| . Therefore the expected number

of simulation attempts is |C|, which is polynomial by assumption, and each attempt is itself
polynomial-time, so that the overall running time is polynomial.

Typically, the ZK definition requires that the simulator be expected polynomial-time, and hence
the above argument suffices. However, one can argue that one should rather consider worst-case
polynomial-time. In this case one has to stop the simulation after a fixed (polynomial) number
of attempts and therefore there is an exponentially small probability of failure. Hence the
distribution of the simulated transcript is only very close (but not equal) to the distribution of
the actual transcript. Hence the protocol is not perfectly ZK, but only statistically ZK (which
is good enough).

3.5 Sequentially Composed ZK Protocols are ZK

As the final step, we show that a protocol composed of several c-simulatable three-move rounds
with small challenge spaces is perfect zero-knowledge. The following lemma holds for any type
of ZK protocol, not only the specific three-move protocol discussed here.

Lemma 3.3. A sequence of s black-box ZK protocols is black-box ZK.

Proof. Consider the sequential composition of the s protocols as a single protocol, and consider
an arbitrary verifier V ′ for this composed protocol. In the i-th sub-protocol, V ′ chooses its
messages (in our example the challenge ci) depending on all the information is has seen up to
that point, including the transcripts of the first i − 1 sub-protocols. This can alternatively be
understood as follows: After each sub-protocol execution, say after the first i−1 sub-protocols,
V ′ determines an arbitrary (efficient) verifier V ′

i for the i-th sub-protocol, where the choice of
V ′
i depends on the first i − 1 transcripts, but V ′

i itself is of a type only suitable for the i-th
sub-protocol.

The overall simulator proceeds sub-protocol by sub-protocol. For each sub-protocol, say the i-th,
it uses the simulator for that sub-protocol and the verifier V ′

i for that sub-protocol to simulate
a transcript. The simulation of the overall transcript is the concatenation of all simulated
sub-protocol transcripts.

The following theorem captures that most protocols discussed in the course are zero-knowledge,
provided the challenge spaces are kept small.

Theorem 3.4. An interactive proof (P, V) consisting of s c-simulatable three-move rounds,
each with polynomial-size challenge space and with uniformly chosen challenge, is perfect zero-
knowledge.

Proof. Lemma 3.1 implies that each sub-protocol is HVZK. Lemma 3.2 implies that each such
sub-protocol is black-box ZK. Hence application of Lemma 3.3 concludes the proof.

References

[Mau15] Ueli Maurer. Zero-knowledge proofs of knowledge for group homomorphisms. In Des.
Codes Cryptogr., pages 663–676, 2015.

