
ETH Zurich, Department of Computer Science
SS 2021

Prof. Ueli Maurer
Dr. Martin Hirt

Konstantin Gegier
Chen-Da Liu Zhang

Cryptographic Protocols

Notes 2

Scribe: Sandro Coretti (modified by Chen-Da Liu Zhang and Konstantin Gegier)

About the notes: These notes serve as written reference for the topics not covered by
the papers that are handed out during the lecture. The material contained therein
is thus a strict subset of what is relevant for the final exam.

These notes discuss the complexity-theoretic formalization of interactive proofs and their com-
putational power as well as three applications of interactive proofs: for digital signature schemes,
as identification protocols, and (very briefly) in multi-party computation, which will be treated
in more detail later in this course.

2.1 Algorithms

Algorithms are commonly formalized as Turing machines, which are the basis for defining no-
tions such as running time and space complexity; the exact formalism, however, is of no concern
in this lecture. For our purposes, an algorithm A takes some input z ∈ {0, 1}∗, performs some
computation, and outputs a value A(z). Running time and space complexity of an algorithm
are measured as a function of the length |z| of its input z. An algorithm is called efficient
if its running time (and space complexity) is bounded by a polynomial; an algorithm with
an arbitrary running time is called unbounded. An algorithm with access to uniform random
bits during its computation is called probabilistic or randomized, whereas an algorithm with no
access to random bits is called deterministic.

2.2 Decision Problems and Languages

In the theory of computation, a decision problem is a special type of computational problem
whose answer is either 1 or 0. Examples of decision problems are deciding whether some graph
has a Hamiltonian cycle, whether some number z is a quadratic residue modulo some other
number m, whether two graphs are isomorphic, etc.

A decision problem can be viewed as a formal language. A language L is simply a subset of the
set of all finite bitstrings, i.e., L ⊆ {0, 1}∗. Then, the elements z ∈ L correspond to instances of
the decision problem whose output is 1, and the elements z /∈ L correspond to instances whose
output is 0.

Languages for which membership can be decided efficiently are in the complexity class P. More
precisely:

Definition 2.1. A language L is in P if there exists an efficient algorithm A such that for all
z ∈ {0, 1}∗,

(i) If z ∈ L, A(z) = 1.

(ii) If z /∈ L, A(z) = 0.

2.3 Non-Interactive Proofs

Proofs of statements of the type “z is a member of L” are modeled as bitstrings x ∈ {0, 1}∗.
A verification function φ takes as input z, representing the statement that z ∈ L, as well as a
proof x and outputs a bit.

An important class is the class NP of languages L that have efficiently verifiable proofs1:

Definition 2.2. A language L is in NP if there exists a polynomial p : N→ N and an efficiently
computable verification function φ such that for all z ∈ {0, 1}∗:

(i) Completeness: If z ∈ L, there exists x ∈ {0, 1}p(|z|) such that φ(z, x) = 1.

(ii) Soundness: If z /∈ L, for every x ∈ {0, 1}p(|z|), φ(z, x) = 0.

A bitstring x with φ(z, x) = 1 for some z is also called a witness for z ∈ L.

2.4 Interactive Proofs

Interactive proofs are a generalization of non-interactive proofs in that the proof string x is
replaced by interaction with an unbounded prover algorithm P . Moreover, both P and V
may now be probabilistic algorithms, and V is allowed to “make mistakes.” Given an input
z ∈ {0, 1}∗, P and V interact, and, at the end of their interaction, V outputs a bit.

Definition 2.3. An interactive proof for a language L is a pair of probabilistic algorithms
(P, V), where V is efficient, such that for all z ∈ {0, 1}∗:

(i) Completeness: If z ∈ L, then V accepts the interaction with P with probability at least
p = 3/4.

(ii) Soundness: If z /∈ L, then V accepts the interaction with any algorithm P ′ with proba-
bility at most q = 1/2.

Languages with efficiently verifiable interactive proofs are in the class IP.

Definition 2.4. IP is the set of languages that can be decided by an interactive proof.

As shown in Exercise 2.1, the choice of p and q is arbitrary, as long as 0 < q < p ≤ 1.2 Moreover,
P can equivalently be restricted to be deterministic, while it is essential that V is allowed to
be randomized.3

It is also interesting to study the memory requirements of computational tasks. To do this,
we define space-bounded computation, which has to be performed by an algorithm using a
restricted amount of memory, the amount being a function of the input size.

Definition 2.5. PSPACE is the set of languages that can be decided by an algorithm that uses
a polynomial amount of space.

1Traditionally, NP is defined as the class of languages that are accepted by non-deterministic polynomial
Turing machines. The two definitions are equivalent.

2Note that q > 0 is important, while one can w.l.o.g. set p = 1.
3However, zero-knowledge cannot be achieved with deterministic P .

Interactive proofs are (probably) more powerful than non-interactive ones. In fact, it was
shown by Shamir in 1990 that the languages for which there exist interactive proofs are exactly
those that can be recognized by algorithms that use only polynomial space (but potentially
exponential running time).

Theorem 2.1. IP = PSPACE.

We will not prove the theorem and merely provide a sketch of the proof for IP ⊆ PSPACE,
which is the easier direction.

Proof (sketch for IP ⊆ PSPACE). Let L ∈ IP. Then there exists an interactive proof (P, V)
satisfying the properties of Definition 2.3. One can show that there exists an algorithm A that
takes an input z and computes the acceptance probability of V (z) in polynomial space, which
obviously allows to decide whether or not z ∈ L.

An example of a language that is in IP but (probably) not in NP is GNI.

2.5 Applications of Interactive Proofs

2.5.1 Identification Protocols

An identification protocol allows an entity Peggy to identify herself to another entity Vic,
provided that Vic is in possession of an authenticated reference value that is somehow assigned
to Peggy. In the context of authentication over a communication channel, the reference value
is digital. It may be, e.g., be a shared secret key or a public key for which Peggy knows the
corresponding secret key. The advantage of a public-key-based identification protocol is that
the same public key can be used for arbitrary applications and, thus, serve as universal digital
representative of Peggy.

Such a scheme can be constructed based on any public-key encryption (PKE) scheme by re-
quiring Peggy to decrypt a randomly chosen challenge message encrypted under her public key,
which proves that she knows the private key. Alternatively, one can employ a digital signature
scheme and have Peggy sign the challenge message.

To implement this idea, however, one does not necessarily need a PKE scheme. Peggy can use
an instance of a hard problem (e.g., some Hamiltonian graph) as her public key and identify
herself by proving knowledge of a solution (the Hamiltonian cycle). If the protocol used is
zero-knowledge, the security of the private key does not degrade, even after many repeated
uses.

The art of designing such identification protocols lies in achieving high efficiency on the one
hand and in choosing a computational problem whose instances can reasonably assumed to be
hard on the other hand. Note, for example, that NP-hardness is no guarantee for the security
of such a protocol, since this is worst-case complexity measure and an NP-hard problem may
still be easy on average instances.

The first practical implementation of using interactive proofs as identification protocols was
proposed by Fiat and Shamir.

2.5.2 Digital Signatures

In this section, we show that one can construct digital-signature (DS) schemes from interactive
proofs of knowledge using the so-called Fiat-Shamir heuristic.

Consider first the problem of transforming an interactive proof of knowledge for an NP-relation
R(·, ·) into a non-interactive one while maintaining the zero-knowledge property. That is, Peggy
wants to generate a proof that can later be verified by Vic without interaction with Peggy yet
does not reveal Peggy’s secret to Vic.

The problem one faces when turning an interactive proof (of the type seen in the previous
sections) into a non-interactive one is that Peggy has to choose the challenges herself, and
therefore the proof will not be convincing. The solution to this dilemma works as follows: For
an appropriately chosen number s of rounds, Peggy proceeds as follows:

1. For i = 1, . . . , s, Peggy generates the first message ti of the ith round.

2. Peggy computes the s challenges c1, . . . , cs by applying a (cryptographic) hash function
h to the t1, . . . , ts generated in step 1, i.e., she computes (c1, . . . , cs) = h(t1, . . . , ts)

3. Peggy generates the s answers r1, . . . , rs to the challenges c1, . . . , cs, for which she uses
the witness x.

This non-interactive proof can be used as a DS scheme as follows: To generate a key pair, Peggy
chooses (in some canonical way) a random instance z of the underlying NP-problem along with
a witness x; the public key is z, and the secret key is x. She signs a message m by executing the
above procedure to prove knowledge of the secret key x but adds the m to the list of arguments
of the hash function h, i.e., she computes the challenges as (c1, . . . , cs) = h(t1, . . . , ts,m). A
signature for m is then the tuple (t1, . . . , ts, c1, . . . , cs, r1, . . . , rs). The signature can be verified
by first checking that the challenges have been correctly computed and then that the answers
r1, . . . , rs are correct, for which the public key z is required.

The security of this scheme stems from the fact that Peggy cannot sufficiently influence the
challenge bits c1, . . . , cs, and, therefore, if s is large enough,4 she cannot prepare herself for
all of them. This necessitates, however, that the hash function not possess any structure that
could be exploited by Peggy. The exact properties required the hash function needs to have in
order for the resulting DS scheme to be secure depend on the interactive protocol.

A property that is sufficient is the seemingly reasonable assumption that the hash function
behaves as a so-called random oracle, which can be thought of as a (shared) random function;
the corresponding idealized world is called the random-oracle model (ROM). The security of
a great number of cryptographic schemes can be proven in the ROM. However, a (family of)
hash function provably cannot satisfy this property, not even in a cryptographic sense.5

Thus, the security of this scheme is heuristic. From a practical perspective, however, such
schemes are very attractive. Firstly, because they can be made very efficient, and, secondly,
because there is a plethora of choices for the underlying hardness assumption, which makes
the Fiat-Shamir heuristic an alternative to, e.g., the RSA DS system, which is based on the
hardness of factoring.

2.5.3 Multi-Party Computation

Interactive proofs will also be very useful for constructing protocols for multi-party computation
(MPC), where it is often necessary that some participant of the protocol prove that he correctly

4If a protocol with a binary challenge space (such as the GI or Fiat-Shamir protocols) is used, then k ≈
100 . . . 200 is needed; if, e.g., the Schnorr protocol is used, s = 1 is sufficient.

5One can show that there exists a DS scheme that is provably secure in the ROM (based on a cryptographic
hardness assumption), but any possible instantiation of the random oracle with an actual hash function leads to
an insecure DS scheme in the plain model.

executed the protocol instructions. More details will be provided in the MPC part of this
lecture.

