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Abstract

The model of information-theoretic secret-key agreement from joint
randomness by public discussion was recently extended to the case
where the insecure communication is not even authentic. It has been
shown that the ability of generating a virtually-secret key is then di-
rectly linked to a certain “simulatability” condition formulated in terms
of the involved random variables. More generally, this condition is
important in the context of identification and authentication among
parties sharing some correlated but not necessarily identical partially-
secret keys. Unfortunately, the simulatability condition is a priori not
very useful since it is not even clear whether it is verifiable in finite
time. We introduce a new intuitive formalism, based on a mechanical
model for representing the involved quantities, for dealing with dis-
crete joint distributions of random variables and their manipulations
by noisy channels, and show that this representation leads to a sim-
ple and efficient characterization of the possibility of secret-key agree-
ment against active adversaries in many cases. The formalism is useful
also for solving different problems related to discrete distributions and
channels, e.g., to give criteria for the possibility and impossibility of
secret-key agreement in the presence of passive opponents.

Keywords. Cryptography, unconditional security, active adversaries,
identification, authentication, key agreement, secret-key rate.



1 Secret-Key Agreement Secure Against Passive and
Active Adversaries

This paper is concerned with information-theoretic security in cryptogra-
phy or, more precisely, key agreement unconditionally secure against ac-
tive adversaries. Generalizing earlier models by Wyner [12] and Csiszar and
Korner [2] based on communication over noisy channels, Maurer [5] and sub-
sequently Ahlswede and Csiszar [1] have proposed the following interactive
model of secret-key agreement by authenticated public discussion from com-
mon information. The parties Alice and Bob who want to establish a mutual
secret key have access to realizations of random variables X and Y, respec-
tively, whereas the adversary knows a random variable Z. Let Pxy 7 be the
joint distribution of the random variables. An example of a possible physical
implementation is a satellite sending random bits at low signal power that
are received by the parties with certain errors. Furthermore, the legitimate
partners are connected by an insecure but authentic channel, i.e., a channel
that can be passively overheard by Eve but over which no undetected ac-
tive attacks by the opponent, such as modifying or inserting messages, are
possible (see Figure 1).

Eve Z

Figure 1: Secret-Key Agreement by Public Discussion from Common Infor-
mation

In analogy to the models of Wyner and Csiszar-Korner, where the mem-
oryless channels can be used many times, it is assumed here that the parties
have access to many independent realizations of the corresponding random
variables. The so-called secret-key rate in this model is the maximal rate at



which Alice and Bob can generate a highly-secret key by communication over
the insecure channel, measured with respect to the number of realizations of
X and Y necessary for the generation of the key.

More precisely, the secret-key rate S(X;Y||Z) of the joint distribution
Pxyz has been defined [5], [4], [10] as the maximal real number R > 0 with
the property that for all € > 0 and sufficiently large IV, Alice and Bob can,
by authenticated public communication, compute keys S4 and Sp from the
blocks XV := [X1, X3,...,Xn] and YV, respectively, such that S4 and Sp
are both equal to a perfectly uniformly distributed key S with probability
at least 1 — ¢, and such that

logy S| > R—¢

holds (if S denotes the range of S), where the (Shannon) information about
S provided by the communication C held over the public channel and by
Eve’s information ZV must be at most ¢, i.e.,

H(S|CZN) > logy |S| —¢ .

Let us now consider secret-key agreement protocols that are supposed to
be secure against active opponents. Clearly, one cannot expect that such
a protocol is always successful if the adversary has full control over the
public channel and can for instance block it completely, thus preventing any
communication between Alice and Bob. Hence the best that can be achieved
by such a protocol is that key agreement is successful when the adversary
is passive, and that the parties realize failure due to an active attack and
reject the outcome (see Figure 2).

To make things worse, we cannot even expect that a malicious active
attack is always detected by both partners: Because Eve can always block
the last (significant) message sent (the one that would make the second party
accept), she can leave Alice and Bob in opposite acceptance states if this is
her objective. However, nearly as strong robustness can indeed be defined
and achieved. It can be required that (with high probability) either both
Alice and Bob reject, or secret-key agreement is successful. Note that we
cannot demand that both Alice and Bob accept in the latter case, but that
they both compute the correct and secure key nonetheless.

According to this, the secret-key rate S*(X;Y||Z) against active adver-
saries (robust secret-key rate for short) was defined in [3], [11], [10] in the
same way as S(X;Y||Z), but where this time the public discussion channel
is not even authentic (i.e., possibly under total control of the adversary). In
addition to the conditions in the definition of S(X;Y||Z), it is required that
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Figure 2: Unconditional Security Against Active Opponents

with probability at least 1 — ¢, either both parties reject the outcome of the
protocol, or secret key agreement is successful.

2 The Simulatability Condition

Clearly, secret-key agreement secure against active adversaries as defined
above can only be possible if Alice and Bob have some advantage over Eve
in terms of the distribution Pxyz. More precisely, it was shown that this
advantage must be such that Eve cannot generate from Z a random variable
X which Bob, knowing Y, is unable to distinguish from X (and vice versa).
In [3], the following property of a distribution Pxyz was defined.

Definition 1 [3] Let X, Y, and Z be random variables. Then X is simu-
latable by Z with respect to Y, denoted by

simy(Z — X) ,
if there exists a conditional distribution P7| 5 such that Pg, = Pxy.

Another way of stating that simy(Z — X) holds is that there exists a
random variable X such that I(X; XY|Z) = 0, ie., XY - Z — X is a
Markov chain, with Pgy = Pxy.

Theorem 1 gives a complete characterization of the possibility of secret-
key agreement against active adversaries, i.e., represents S*(X;Y||Z) in



terms of Pxyz and S(X;Y||Z). The way of proving Theorem 1 that is
sketched below (see [6]) is a simplified version of the proof of a similar result
in [3].

Theorem 1 [3] Let Pxyz be a distribution. Then S*(X;Y||Z) = 0 holds
if either simy (Z — X) or simx(Z — Y') holds. Otherwise, we have

S*(X;Y]|2) = 5(X;Y]|2) .

Proof Idea. Clearly, S*(X;Y||Z) = 0 holds when Eve can simulate one of
the legitimate partners towards the other. On the other hand, if she is not
able to simulate either X or Y, then key agreement at asymptotically the
same rate as against an only passive wire-tapper is possible as follows. First,
Alice and Bob generate an only short key by carrying out the protocol for
the passive case, but authenticating each bit sent with a certain block of
realizations of the random variable X or Y, respectively. (With a typical-
sequences argument, one can show that Eve’s success probability of an active
attack can be made negligibly small.) Then a long secret key is generated
by again using the protocol for the passive case, but this time the messages
are authenticated by e-almost-strongly-universal hashing [9], using the pre-
viously generated key. This way, the number of realizations of the random
variables X and Y required for the authentication can be made asymptot-
ically negligible as compared to the amount of randomness needed for the
passive-adversary protocol. O

A result similar to the pessimistic implication of Theorem 1 (with the
simulatability property as the important criterion) is even true in the sce-
nario where the parties have access to only one single realization of the
random variables [3], [10], [6]. More generally, simulatability is an impor-
tant criterion for deciding whether an impersonation attack is possible in
a scenario where parties are involved that share some correlated, but not
perfectly equal, secret keys about which the opponent has some information.

3 A Calculus for Discrete Distributions and Chan-
nels

According to Theorem 1, the simulatability condition allows for separat-
ing the cases where secret-key agreement is possible and impossible in the
presence of active adversaries. However, the characterization is a priori not
practical because it depends on the existence of a particular channel (with



certain properties) among the (uncountably-infinite) set of all discrete chan-
nels with given input and output alphabets. In the following, we hence
consider the following questions:

e Isit, for a given distribution Pxy z, possible to decide efficiently whether
simy (Z — X) holds?

e Furthermore, if the answer is “yes,” is it possible to efficiently find a
channel PYI 5 such that Pg,, = Pxy holds?

We start by analyzing an example.

Example 1 Let the distribution Pxyz of the random variables X, Y, and
Z with ranges X = {z1, 22}, Y = {y1, 12}, and Z = {21, 22, 23} be as follows:

Pxyz(z1,y1,21) = 6/100 ,  Pxyz(z2,y1,21) = 4/100
Pxyz(z1,y1,22) =9/100 , Pxyz(z2,y1,22) = 6/100 ,
nyz(xl,yl,Z'g,) = 15/100 ) nyz(.’L'Q,yl,Zg) = 10/100 )
Pxyz(z1,y2,21) = 36/100 , Pxyz(z2,y2,21) = 4/100
Pxyz(z1,y2,22) = 9/100 ,  Pxyz(z2,y2,22) = 1/100 ,
Pxyz(z1,y2,23) =0, Pxyz(x2,y2,23) =0 .

In order to decide whether simy (Z — X) holds, we first consider the follow-
ing representation of the (conditional) probabilities. We mark every symbol
z; € X and every z; € Z with an empty or filled circle, where the size (or
mass) of the circle corresponds to the probability Px(z;) or Pz(z;), and
the position in the interval [0,1] is given by the probability Py|x_,,(y1) or
Py|z—.,(y1), respectively (see Figure 3).
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Figure 3: Representation of Pxyz

Note first that not the entire information about Pxyz is contained in
this representation: only the distributions Pxy and Pyz, but not Pxyz,
can be reconstructed from the quantities represented in the picture. We will
see however that the fact whether or not X is simulatable by Z with respect
to Y depends, not surprisingly, only on Pxy and Pyz, as Theorem 2 shows.
Second, not every representation corresponds to a distribution Pxyz. This
is only true if the total mass of each point set is 1, and if the marginal



distribution Py is equal for both distributions Pxy and Pyz. The last
condition is equivalent to the fact that the sets of full and empty circles have
the same center of gravity when interpreted as point masses.

Let now Z() with 23 = {z§2), zg)} be generated by sending Z over the
channel

2

Pz<2>|z(2§)7z1) =1,
2

Py (4, 2) = 1,
2

PZ(2)|Z(Z§ )7Z3) = ]_ .

For the new distribution Py ,(2), the above representation is as shown in
Figure 4: Two masses have been united in their center of gravity.

Figure 4: The Channel P2, and Pyxy 5(2)

Let then Z(®) be sent over the additional channel PZ(3)| 7(2), Where Z ®) =
{z§3), zé?’), z§3)}, with

Pys)|z) ¥, = 1,
Py 702 2,22 = 172,
Py 2,2 = 1/2.

This corresponds to splitting one of the masses into two (equal) parts (see
Figure 5).
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Figure 5: The Channel P70, and Pyy 5(3)

Finally, let Pfl 23, With X = {Z1,Z2}, be given by

3
sz(s)(ml,zg ) =1,
@3
Pg iz (@1,25)) = 1,
_ 3
Py|z(3)(w2,z§ )) = 1.

The use of this channel again corresponds to uniting two masses in their
center of gravity. The constellation of the masses with respect to X and X
are now equal (see Figure 6), which means that Py, = Pxy holds. Hence
simy (Z — X) is true, and the corresponding channel P,z is the cascade of
the three channels above:

PY|Z($laz2) = PY|Z(527’Z2) = 1/2’
PY = PY|Z(E2,23) = 1/2

(see Figure 7).

We can now make this representation in the mechanical model more
precise and exploit the direct connection between distributions and channels
on one side and mass constellations as well as -operations on the other, in
order to give a simple characterization of (non-)simulatability. The purpose
of this physical model is to give more intuitive deductions and formulations of
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Figure 7: The Cascaded Channel Pfl 7

results that could as well be stated and proved in terms of distributions and
channels. Theorem 2 below makes a direct link between the two formalisms
and justifies the point of view we take. In the following, particular emphasis
lies on an intuitive presentation.

Definition 2 For an integer N > 1, an N-dimensional (normed) mass con-
stellation M := (m;,a;)i=1,. ¢ is a family of pairs with m; € (0,1] and
a; € [0,1]" for all 4 such that Y, m; = 1. We additionally assume that the
pairs are ordered with respect to the lexicographic ordering of the vectors
a;. The center of gravity (center for short) ¢(M) of such a constellation is
given by

£
c(M) = Zmiai .
i=1

Two constellations are equicentered if they have the same center of gravity.

A constellation M’ = (m},a});=1,. ¢ is derived from M = (m;,a;)i=1,... s by

mass splitting if £/ = £ + 1, and if there exist 0 < p < 1, 1 < 49 < ¥, such



that

(my, a;) 1<i1< g
'’ (pmiy, aiy) i =10
m;,a;) = .
(mi2) =9 (1= p)migyaig) i =0 +1
(m,_l,a,_l) gt+l1<i</i+1.

Furthermore, M’ is derived from M by mass union if ¢/ = £ — 1, and if there
exist 77 < 12, 11 < 1y < 19, such that

m;, ) 1<i1<1y
mz+1,az+l) 11 <1< gy

(
(

I ah) = ) . My Qi T1Mip iy i —
(my;,a;) = (mz1 Mgy e ) i =1y
(ms, a;) ty < 0 <2
(mz+1,az+1) 12<i1<{l-1.

We call mass splitting and union basic mass operations. A constellation M
is called stronger than M’, an event denoted by M ~» M’, if there exists a
finite sequence of basic operations that transforms M into M’.

Let Pyy be the joint distribution of two random variables U and V' with
ranges Y and V = {vi1,...,vn41}. Then the N-dimensional constellation
My vy is defined by

Myv = (Pu(u), (Pyi=u(v1),- - Prjuy=u(vN)))ueu -

Note that the definition of M.y leads to a one-to-one correspondence be-
tween distributions Pyy, where |V| = N + 1, and N-dimensional normed
mass constellations (m;, ai)izl,m,g contained in the simplex characterized by
(a); > 0 and T, () < 1.

It is clear that if M ~» M’, then the two constellations M and M’ are
equicentered. On the other hand, there exist equicentered constellations,
none of which is stronger than the other (see Figure 8).

(0.1,0) (0.5,0.25) (0805  (0.50.75) (0.1,2)
. Wy . ay .
¢ ‘ VAR |
0 05 1

Figure 8: Incomparable Constellations: None is Stronger

Theorem 2 links simulatability and mass constellations. In this context,
note first that for every distribution Pxyz, Mx.y and Mz, y are equicen-
tered.
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Theorem 2 Let Pxyz be the joint distribution of X, Y, and Z. Then X
is stmulatable by Z with respect to Y if and only if Mx .y is stronger than
Mz, y:

Simy(Z — X) < MZ<_y’\/> MX(—Y .

Proof. Let Py,v and Py,y be the joint distributions of random variables U;
and V, and Uy and V, respectively. Clearly, My, v can be obtained from
My, v by a mass splitting or union operation if and only if there exists
a “splitting channel” (as in Figure 4) or a “union channel” (see Figure 5)
PU2|U1’ respectively, such that

Pg,v = Pu,v - P52|Ul = Py,v .

The statement now follows from the facts that every discrete channel (with
m output symbols) can be represented as a cascade of splitting and union
channels, and that a cascade of channels is equivalent to the sequence of the
corresponding mass operations. The first of these two facts can be shown as
follows. First, all the letters of the input alphabet can be split, one after the
other, to m symbols each (by m — 1 splitting channels with certain proba-
bilities for each symbol), and they can be united by union channels to the
output symbols of the discrete channel. O

Remark. Note again that both conditions only depend on Pxy and Pyz,
but not otherwise on Pxyz. Clearly, the condition given in Theorem 2 is
a priori not more than a new formulation of simulatability, and is not obvi-
ously verifiable more efficiently. However, it leads to an efficiently-checkable
criterion as Corollary 4 and Theorem 6 show.

As a preparation for the proof of Theorem 3, we describe a special mass
operation, called mass approach, that can be composed by four basic opera-
tions (see Figure 9).

0.5

Center of Gravity

Figure 9: A Mass Approach

11



Lemma 1 Let a constellation M = (mj,a;)i=1,...¢ be given, and let i # ¢/,
1<14,i <L. We denote by

it = (mia; + myay)/(m; +my)

the center of the ith and i'th masses. Then for every X € [0,1], there exist a
sequence of four basic mass operations transforming M into the constellation
that one obtains when the ith and i'th pairs are replaced by the pairs

(miyai + Meig —ai))  and  (my,ay + Acio — air))
(which must be correctly put into the ordering).

Proof. The idea is that the masses m; and my “exchange” a suitable mass
0 < me < min{m;, my}, i.e., that both masses are split into two parts, one
of which is equal to m. in both cases, and the union operation is applied
twice to the remaining mass with the me-part of the other mass. Hence four
basic operations are required. Because the choice me = 0 leaves m; and
my unchanged, whereas m, = min{m;, m; } corresponds to mass union, and
since the result depends linearly on m., every position of m; and m; on their
connecting line such that the masses are closer to each other, and such that
the center of gravity remains unchanged, can be achieved this way. More
explicitly, the mass m, must be chosen as A - min{m;, m; }. m|

We have now established the mechanical model and the necessary tech-
niques for our characterizations of simulatability. In Corollary 4 we give a
simple and efficiently verifiable, both necessary and sufficient condition for
simulatability with respect to a binary random variable Y. Furthermore, the
proof of Theorem 3 additionally shows that the corresponding channel Pfl z
can even be computed efficiently.

We first define what it means that a one-dimensional mass constellation
is “more centered” than another. This relation leads to the characterization
we are looking for. Note that this relation is not a linear ordering: When
considering two random mass constellations, typically no one will be more
centered than the other (see Figure 8).

Definition 3 For a one-dimensional mass constellation M and for 0 < ¢ < 1,
we denote by £;(M) the leftmost masses of M of total amount d. (Typically,
of one of the masses in M, only a part will be in £;(M).) A constellation M’
is called more centered than M, denoted by

M <M,

12



if for all ¢,
c(t(M')) = c(€(M)) ,

where ¢(S) stands for the center of gravity of a set S of masses.

Note first that this is a symmetric notion, i.e., that “left” and “>” could
be replaced by “right” and “<” without changing the definition. Given two
(finite) mass constellations, this quantity can be efficiently (i.e., in time
linear in the total number of masses) checked. To see this, note that M’ =
(m}, a%)j=1,.0 < M is equivalent to the fact that for every 1 < k < ¢/, the
center of the set of masses mf,...,m} is not left of (i.e., smaller than) the
center of £y ¢ ...yt (M).

Theorem 3 Let two equicentered one-dimensional mass constellations M
and M' be given. Then M is stronger than M' if and only if M’ is more
centered than M :

M~M < M <M.

Clearly, Corollary 4 follows immediately from Theorems 2 and 3.

Corollary 4 Let Pxyyz be the joint distribution of random variables X, Y,
and Z, where Y is binary. Then X is simulatable by Z with respect to Y if
and only if Mx .y is more centered than Mz, vy, i.e.,

simy(Z - X) <= Mx.y <Mz, y .
Proof of Theorem 3. We assume first that

M' = (m}, a5)j=1,..0 < M = (m;,a:)i=1,..¢

holds. We show by induction that for every 0 < jo < ¢, there exists a
sequence of basic mass operations that transforms M into a constellation
M;, = (Mg, ax),_, 7 such that for every j < jo, there exists k(j) (where
k(5) # k(') if § £ j,’) with my(;) = m; and @(;) < aj, and such that the
center of the masses M, . ..,m;, of Mj, is equal to c({m, +...+m;, (M)).

Clearly, this holds for jo = 0. We assume that the statement is true for
0 < jo < ¢ and show its validity also for jo + 1. Let M, = (mk,ak)kzl,m,z
be defined as above.

We transform M;, into M;j, 11 as follows. First, the leftmost among
the masses mj,+1,Mjy+2, ..., of total amount mg-o 11, are united into their
center of gravity. Let (Mjo+1,@jo+1) = (M}, 1,@jo+1) be the resulting mass.
Then, because of M' < M and by the induction assumption, the center of

13



the masses (m1,@1),-- -, (Mjo+1,8jy+1) is not on the right-hand side of the
center of gravity of £, | 4 (M'). Hence there exists a sequence of mass
approaches, applied only to masses among m,...,Mj,+1, such that each of
the the resulting masses (still of the same sizes) is on the left-hand side of
(or at the same position as) the corresponding mass of M’ (see Figure 10).
Hence this new constellation satisfies the induction assumption for jy + 1,
and this concludes the induction argument.

M’
|
|
mS my Mg - My . my
— — — — ! —
om. M, MmMg---mj., ,om 1
M

Figure 10: M’ and M, 11

Therefore M is stronger than some M satisfying the above property,
with respect to M', for jo = ¢'. However, because M and M’ are both
equicentered to M, and because all masses of M lie, roughly speaking, on
the left of (or at the same place as) the corresponding masses of M’, we must
have that M = M, hence M ~» M.

We show the necessity of the condition. Assume for M and M’ and for
some t that

c(L(M')) < c(Ly(M)).

Then M ~4 M' holds because the basic mass operations, i.e., mass union
(mass splitting leaves all the centers unchanged), can only move the center
of the set £;(M) to the right (union of two masses, one in the set £;(M), and
one in the complement) or leave it at the same place (union within £;(M) or
within the complement). a

Note that the criterion for simulatability of Corollary 4 is not only very
simple and efficiently verifiable, but that the proof of Theorem 3 also shows
how a channel PYI 5 for simulating X with respect to Y can be constructed
efficiently.

Let us now, after the complete analysis of the case of a binary ran-
dom variable Y, consider the general case again. In Definition 4, we give
a straight-forward, and also efficiently checkable, generalization of the no-
tion that a constellation is more centered than another. This leads to a

14



necessary criterion for simulatability (Theorem 6). However, although it ap-
pears to be sufficient as well in many cases, we give an example for which
non-simulatability is not detected by the criterion.

Definition 4 Let M and M' be two N-dimensional mass constellations. Let
furthermore a line L, passing through the origin, be given. We now consider
the orthogonal projections of all the masses in the N-dimensional space onto
L. This yields two one-dimensional equicentered mass constellations My, and
M. We say that M' is more centered than M, M' < M, if M; < Mjy, for
every line L.

It is not difficult to see that also in N dimensions M ~» M’ can only hold
if M' < M holds. The reason is that My ~ M| follows from M ~» M':
Projections of mass operations are mass operations again.

Theorem 5 Let M and M' be N-dimensional equicentered mass constella-
tions. If M s stronger than M', then M' must be more centered than M :

M~M — M <M.

Corollary 6 Let Pxyz be the joint distribution of X, Y, and Z. If Mx.y
is not more centered than Mz, y, then X is not simulatable by Z with respect
toY, i.e.,

Mx.y A Mz.y — (simy(Z — X) does not hold) .

Note that this condition is, despite the fact that the number of lines through
the origin is infinite, efficiently verifiable since the number of points is fi-
nite. First, not every direction, i.e., every line, has to be checked separately.
There are only at most (zgz') directions for which the mass constellations
are different (with respect to the order of the masses), where £ and ¢ are the
numbers of masses in M and M’, respectively. Equal orders means that, in
the N-dimensional space, the same masses are “leftmost.” Hence, all these
directions can be treated simultaneously by looking at extremal directions.
Furthermore, only the values ¢ corresponding to a subset of the masses in
M’ have to be considered (as in the one-dimensional case).

Unfortunately, the given condition is not sufficient for simulatability
(i.e., for a mass constellation being stronger than another) in the N(> 2)-
dimensional case (although it appears to be a “good” condition failing to
detect non-simulatability only in a small fraction of all cases). The following
is a counterexample.
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Example 2 Consider the following two-dimensional mass constellations M
and M'.

M = (0.2,(0,0)), (0.2,(0,0.5)), (0.2,(0.5,0)),
(0.2,(0.5,0.5)), (0.2, (0.25,0.25)),

M = (0.2,(0.1,0)), (0.2,(0.1,0.5)), (0.2, (0.4,0)),
(0.2, (0.4,0.5)), (0.1, (0.15,0.25)), (0.1, (0.35,0.25))

(see Figure 11).

1 —

5@ O O

O @ O

0.@::@‘::::‘
0

Figure 11: A 2-Dimensional Counterexample

It is not difficult to see that M’ < M holds. First, it clearly holds for the
horizontal line and, because the (horizontal) distances between neighboring
masses change in the same ratios, for all lines except the vertical line, for
which the projected constellations are identical however.

On the other hand, M cannot be transformed into M’ by basic opera-
tions. This is true because when considering the projection to the vertical
line, it is clear that no union operation can be made except between masses
with the same y-coordinate. However, with such operations only, M can
clearly not be transformed to M’ because of the masses with y-coordinate
1/2. Hence M +» M’ holds.
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4 Concluding Remarks

We have analyzed the so-called simulatability condition which is of cen-
tral importance in the context of unconditionally-secure identification and
authentication between parties sharing some correlated information. For in-
stance, this condition characterizes the possibility of secret-key agreement
based on joint randomness in the presence of an active adversary. However,
the criterion was not shown to be practical previously; it was not even clear
whether it can be checked even in finite time.

We have introduced a new formalism for representing joint distributions
of discrete random variables and their manipulations by noisy channels in
a mechanical model. This representation in one dimension (i.e., if one of
the random variables is binary) leads to a simple necessary and sufficient
criterion for simulatability which is verifiable in deterministic time linear
in |X| + |Y| + |Z|. Moreover, the given algorithm yields the corresponding
channel in case simulatability holds. In the general n (> 2)-dimensional
case, an apparently close-to-tight (yet not sufficient in all cases) necessary
criterion, which is checkable in time polynomial in |X| + |Y| + | Z| has been
described. It is an open question however to find a simple necessary and
sufficient criterion for the general case.

The introduced formalism can be helpful also with respect to other prob-
lems dealing with discrete distributions and noisy channels. An example is
to determine the intrinsic conditional information I1(X;Y]Z) defined by

I(X;Y|Z):= min I(X;Y|Z),
XY »Z—~Z7
a quantity that has been shown closely related to the possibility of secret-key
agreement against passive adversaries [7], [10].
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