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Abstract—Shared randomness is an important resource in
cryptography. It is well-known that in the information-theoretic
setting there is no protocol that allows two parties who do not
trust each other to obtain a uniformly distributed shared bit
string solely by exchanging messages such that a dishonest party
can not influence the result. On the other hand, in the situation
where the two parties already share a random bit string and want
to use it in order to construct a longer random bit string, it is
only known to be impossible when the protocols are restricted
in the number of messages to be exchanged. In this paper we
prove that it is also impossible when arbitrarily many messages
are allowed.

I. INTRODUCTION

The two-party task of flipping coins asks for protocols
that enable two parties to generate a shared uniformly dis-
tributed bit string such that even if one party is dishonest
and deviates arbitrarily from the protocol, it can not influence
the distribution of the resulting bit string. This is important
for instance when playing games over the internet. The first
such protocol was given by Manuel Blum [1]. It is secure
in a computational stand-alone security model. We focus on
the information-theoretic setting and work in the constructive
cryptography framework where security is maintained under
arbitrary composition [2], [3]. In this security framework it
is easily seen to be impossible to flip coins from scratch
just by communication. Therefore, it is interesting to consider
the scenario where the two parties already dispose of shared
coins and want to obtain more. This was termed coin toss
extension by Hotheinz et al. in [4]. See also [5] for a related but
more general problem, albeit with weaker bounds. Hotheinz
et al. studied the problem with respect to the computational
and the information-theoretic flavour of both a stand-alone
and the universal composability security notion and gave a
nearly complete characterization of when coin toss extension is
possible. It is in the case of information-theoretic composable
security where their answer is not complete, for they show
that information-theoretic composable coin toss extension is
impossible with protocols that exchange less then a certain
number of messages but not whether it is possible or not with
protocols that proceed in arbitrarily many rounds. We close
this gap by answering the question in the negative.
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II. PRELIMINARIES
A. Constructive Cryptography

In constructive cryptography every object is a system. In this
paper we think about systems in their incarnation of random
systems [6]. They have several interfaces each of which can be
connected to an interface of another system so that the systems
can exchange messages. The messages a particular system
sends are controlled by conditional probability distributions
given all earlier sent and received messages of that system.
Now the basic building blocks of constructive cryptography are
resources. These are systems that have one interface for every
party. Since we remain in the two-party case, they have two
interfaces in this paper. Resources provide the functionalities
to the parties that are either assumed to be available or are
aimed for in a protocol. For instance, a channel < is a resource
which just forwards all messages from one party to the other.
At the heart of constructive cryptography lies the notion of
constructing resources from other resources in a precisely
defined way with the help of converters. A converter is again
a two-interface system. It can be plugged to the interface of a
resource R belonging to a party A where it implements A’s
part of a protocol by using the functionalities provided by
R. 1t provides to A new functionalities at the free interface.
In a sense, a converter can be seen to convert the interface
of a resource with some functionalities to an interface with
different functionalities. A protocol can be thought of as a
pair of converters. Last there are distinguishers which have
three interfaces. Two of the interfaces of a distinguisher D
can be connected to the two interfaces of a resource R. D
then outputs a bit at its third interface after communicating
with R. So we obtain a random experiment D(R) where the
random variable Z that describes the output of D is defined.
The goal for D is to distinguish R from another resource S
by outputting 1 in the case of S and 0 in the case of R.

Definition 1. The advantage of a distinguisher D in distin-
guishing the resources R and S is given by

AP(R,S) =PrP®(z =1) - prPW(Z = 1).
We write R ~. S if
AP(R,S) <e

for all distinguishers D.
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In our case resources have two interfaces, which we con-
sider as the left and right interface. We write terms like aR,
which means that the converter o is connected to the left
interface of the resource R. Similarly, we can write RS for the
system we obtain when the right interface of R is connected to
the left interface of S. Now we can formulate precisely what
is understood by constructing a resource S from a resource R
with the help of a protocol given by the converters « and f3.

Definition 2. The protocol ™ = («, 3) securely constructs the
ideal resource S from the available resource R with security
parameter ¢ > 0 and both parties allowed to be dishonest if
there are converters o, 7 such that

aRp ~. S,
aR =. So,
RSB ~.78S.
The converters o and 7 are called simulators.

The first equation is the so-called correctness equation. It
says that the protocol really constructs the desired resource.
The second and third equation are the simulatability condi-
tions. They model what a dishonest party is allowed to achieve.
Namely, it is only allowed to achieve in the real world what
it can also achieve in the ideal world with the help of a
simulator. See [3, Theorem 1] for the fundamental theorem
of constructive cryptography which says that the construction
notion is maintained under composition.

B. Coin Tossing Resources

A 2-party coin tossing resource C'I;, generates a uniformly
random n-bit string, which can be received by both parties
upon request. In this basic form it is trivially impossible
to securely construct C7T,, by any protocol from a weaker
resource. This is because if there were such a protocol, then a
distinguisher who does not participate at all in the protocol as
party A, i.e., does not send any messages, would still need to
receive the n-bit string for the other party B. The string would
thus need to be generated by B alone. Similarly with A and B
swapped so that the two strings of the two parties would differ
with large probability contradicting the correctness condition.
Therefore, we allow dishonest parties in the ideal world to
obtain the n-bit string first and control when the other party
receives it.

Definition 3. Let n > m > 1 be integers. A coin tossing
resource CT,, with m coins is a two-party resource that
generates a uniformly distributed m-bit string once and outputs
it to both parties in response to every query. The resource C'T,
with n coins is like C'T;, and, in addition, lets each party set a
flag that has the following effect if set by party A, say. When
party B queries the m-bit string, it is delivered to party A
instead, who can then let the (unaltered) string be delivered to
party B at any later point. The filter ¢ is a converter which
shields away this flag so that ¢CT, ¢ = CT,,.

We now formulate what we mean by a coin toss extension
protocol. We assume that the parties do not only dispose of

m coins, but also have a communication channel between
them. So, we need to first introduce the concept of parallel
composition.

Definition 4. The parallel composition [R | S] of two
resources R and S is the resource which at its left and right
interfaces grants access to the corresponding interface of R
and S.

Definition 5. An information-theoretic protocol for extending
m > 1to n > m coins with security parameter ¢ is a protocol
(a, B) such that

a[CTy [¢] 8 ~e ¢CT; ¢ (D
alCT,, |«] = ¢CTo )
[CTm |<—>]ﬁ S TOT,’L(b 3)

with simulators o, 7.

In this model both honest and dishonest parties can get the
m-bit string at the beginning. This fits our intuition behind the
problem, which is that the parties already have the m coins
before they engage in a protocol to obtain more coins. One can
also be interested in the situation where the parties receive the
m coins after they have completed the protocol. Note that the
results in [4] are proven in such a model. For honest parties this
does not make a difference as they can just send in each round
of the protocol each of the 2 messages that they would have
sent if they would have gotten the corresponding m-bit string
in the beginning, and then decide on the set of messages in the
end when they finally receive the coins. Dishonest parties on
the other hand are potentially less powerful in this situation.
This is reflected in that the simulators are not forced to commit
to an m-bit string at the beginning, potentially allowing for a
better simulation strategy. Therefore, an impossibility theorem
for coin toss extension in such a model would be a stronger
statement — it would establish impossibility even against
weaker adversaries.

III. IMPOSSIBILITY RESULT

Theorem 1. Let n > m > 1 be integers. There is no
information-theoretic protocol for extending m to n coins with
security parameter € < %.

Proof. Suppose that there are converters «, 3 and simulators
o, T such that (1), (2) and (3) hold. Let D be the distinguisher
that connects to n-bit coin tossing resources, fetches the
random bit strings on both sides and outputs 1 precisely if both
strings are equal. Connecting D to, for instance, C'T;, yields
the random experiment D(CT,,), which defines the random
variables Y, Y’ € {0,1}" and Z € {0,1} describing the bit
strings received by D at the left and right interface of C'T,,
and the decision bit of D, respectively. Of course in this case
Z is always equal to 1 by the definition of C'T,,. We write

prP(CT) (7 = 1) = PP Ty = y') =1

for the probability that D outputs 1 in this experiment. Let
x be the system that connects on both sides to systems of
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Figure 1: A graphical representation of the experiment Es in the proof of Theorem 1 together with the change in viewpoint
when the right part of the system is absorbed into the distinguisher.

the type [CT,, |<>], fetches the m-bit strings from both coin
tossing resources and then forwards all messages between the
channels. Now consider the experiments

D(a[CT,y, []B), (E1)
D(a[CTy [©]X[CT,, [<2]B), (Eo)
D(¢CT,ox[CTm |<2]B), (E3)
D(6CT,oxTCT,0). (B

In each of the experiments there are the random variables
Y, Y’ € {0,1}" and Z € {0, 1} that describe the n-bit strings
received by D at the left and right interface and the decision
bit of D. Additionally, in the experiments F5, '3 and F; we
have the random variables X, X’ € {0,1}™ describing the
m-bit strings received by x at its left and right interface. For
the first experiment E; we get from the correctness equation

(1
Pri(z =1)
= prP@T)(7 = 1)

_ (PrD(CTn)(Z =1)— PrD(a[CTm|<—>]5)(Z —1))
=1-AP(a[CT,, |+]8,CT;)

In the experiment E5 all messages sent by « and § and ulti-
mately the n-bit strings Y and Y are controlled by conditional
probability distributions given earlier messages and the m-bit
string from one of the C7T,,, i.e., given X in the case of
o and X' in the case 3. Therefore, under the condition that

X = X', all probabilities in F5 are equal to the corresponding
probabilities in E;. In particular

Pr22(Z=1|X=X)=PrF'(Z=1)>1-¢c. (5

Next we will find with the help of the simulatability equa-
tion (2) that the conditional probabilities in E3 given X = X'
are not much different from the corresponding probabilities in
E5. Concretely, we will show that

Pr”?(Z=1|X=X)

<Prf3(Z=1|X=X)+e. (6)

This equation together with Equation 5 reflects the intuition
that the goal of the simulator o in Fs5 is to play the protocol
in such a way as to influence the resulting n-bit string Y’ so
that it is equal to the string Y it has received from CT),. To
go from Es to E3 we absorb the right part x[CT,, |<]8
of the systems in F5 and FE3 into the distinguisher D in
order to get a distinguisher for the left parts «[CT,, |«]
and ¢CT o alone. See Figure 1 for a graphical representation
of this change in viewpoint. Then the distinguisher knows
the m-bit string of «[CT,, |<>] respectively ¢CT) o, say
x € {0,1}™, before [CT,, |<+]5 sends or receives its first
message. Therefore, instead of emulating the unaltered system
[CT,, |++]8 internally, which outputs a uniform z’ € {0,1}™,
it can sample the system from the instances that output x.
The fact that in both experiments FEy and FEs the random
variable X', which describes the m-bit string generated by
the C'T, in the right part, is uniformly distributed, implies
that X, which describes the m-bit string from «[CT,, |+]
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respectively ¢CT o, is independent of X = X’ in these
experiments. Therefore, the new distinguisher simulates the
experiments Fy or F3 conditioned on X = X’ when it is
connected to «[CT,, |+] or ¢CT) o, respectively. We call
this distinguisher D’ and get from Equation 2

Pr2(Z=1]X =X")
< PP (7 = 1) + ¢
=Pr®(Z=1|X=X) +¢,

which proves Equation 6.

Next we want to substitute 7CT) ¢ for the right part
[CT,, |++]5 of the system in E3 in order to go from E3 to E,.
The method will basically be the same as before. Absorbing an
appropriately sampled version of the left part $CT, oy into the
distinguisher will allow us to apply the simulatability equation
(3). By decomposing the event Z = 1 into the subevents where
the m-bit string from CT,, attains a specific value X' = 2/,
we can write

Pr(Z=1|X =X
= > PBX =4 X=X
z’'€{0,1}™

Pr(Z=1|X=X"=1). (7)

Here X’ = z’ is not independent of X = X’ since X is
not necessarily uniformly distributed in the experiment Es.
From the fact that, on the other hand, X" is indeed uniformly
distributed, we get

Pri (X’ = 2/)PrP (X = 2')
Pri (X = XV)

PrP (X' =2/ X = X') =

E3 [ E3 o
= Pr (X 73;171? (X =2) =Pri (X =2').

Now let D" be the distinguisher that connects to [CTy, |«+]3
and tries to simulate the experiment E3 with X = X' by
emulating the systems D, y and, after it knows the m-bit string
2’ from CT,,, the system ¢CT, o sampled from the instances
that output the same string 2/, unless Prs (X = 2/) = 0 in
which case there is no such instance. In this case D’ outputs
Z = 0 immediately. The probability

PrD//([CTmM—)]ﬁ) (Z=1)

= > PrBX =2)10(Pr (X =2))
z'€{0,1}™

Prf(Z=1|X =X =2 (8)

is not precisely equal to (7) since instead of Pr* (X = z/)
there is the factor 27"10(Pr®* (X = 2’)) where 1 is the
indicator function. Fortunately, this amounts to an error of at
most €. Intuitively the reason is that Equation (2) implies that
the distribution of X is not far from the uniform distribution.
Consider the distinguisher for ¢CT) o and a[CT,, |+] that

retrieves the m-bit string, say =’ € {0,1}™, and then outputs

1 with probability
1.0(PrP* (X =2/)PrP*(Z =1 | X = X' =2').

This distinguisher outputs 1 precisely with probabilities (7) or
(8) when connected to ¢CT o or a[CT,, ||, respectively.
Hence it follows from the simulatability equations (2) and (3)
that

Pr(Z=1|X=X)
< prP (€TI0 (7 = 1) 4 ¢
< PrP T (7 = 1) 4 2. )
Together Equations (5), (6) and (9) read
pPrP OO (7 = 1) > 1 — 4e.
On the other hand, we find
PrD"(TCT,;qs)(Z —1)
= Y. > PPy =y)
y'€{0,1}" a’e{0,1}™

PriiX =2 | Y =)

‘15o(Prf4(X = 2'))

PrPiy =y | X =2)
1 b / /
sQ—nZZPr Y=y | X=2)
Yy x

1
= ﬁZZPrE“(Y:y’ | X =2')
z oy

2m 1
<z
2n = 2
It follows that

1—4e < PrP'0CTd) (7 = 1) <

N |

So, 4¢ > % in contradiction to € < %. ]
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