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Abstract

According to results by Specker, Bell, and Kochen and Specker—among others—, quantum
mechanical systems can generally not be described by hidden variables, i.e., classical pa-
rameters determining the system’s behavior under all possible measurements. Kochen and
Specker’s result implies that three- or higher-dimensional systems cannot be deterministi-
cally and consistently prepared in a classical way for all possible alternative measurements
simultaneously, whereas Bell showed that the behavior of entangled parts of a quantum
system can be non-local : classically, it could be explained only by communication between
the parts, not by shared information. Pseudo-telepathy games, which have been introduced
as a deterministic version of non-local behavior, are distributed tasks that can be fulfilled
with shared quantum—but not classical—information. We show a close connection between
the results of Kochen and Specker on one side, and non-locality, i.e., pseudo telepathy, on
the other: Every set of alternative measurements of a quantum system which is “unpre-
dictable” in the sense of the Kochen-Specker theorem leads to a pseudo-telepathy game,
and vice versa. It is a consequence of our results that pseudo-telepathy games exist that
use a maximally entangled quantum trit pair as a resource, whereas there is no such game
requiring a quantum bit pair only.

1 Quantum Mechanics and Hidden Variables

1.1 The Kochen-Specker Theorem: Weak and Strong Kochen-Specker Sets

It has been a central objective in the history of quantum mechanics to embed quantum theory
into a classical theory, based on so-called hidden variables. The fundamental impossibility of
this approach was shown roughly forty years ago by Specker [8], Bell [1], and Kochen and
Specker [6]. In [8] and [6] it was shown—by a purely algebraical proof—that the behavior
of a three- (or higher-) dimensional quantum system cannot be described in a consistent way
by hidden variables. Roughly speaking, they proved that somebody who claims to be able to
predict the behavior of such a system under all possible alternative measurements can be forced
into a contradiction—all these alternative outcomes do simply not co-exist in a deterministic
and consistent way. More precisely, Specker’s and Kochen and Specker’s results imply that any
attempt of determining a definite measurement outcome for any possible measurement basis
must necessarily be contextual : It is impossible to assign values 0 and 1 to all unit vectors in the
three-dimensional Hilbert space H = C3 in such a way that every orthonormal basis contains
exactly one vector with value 1—this vector would be the corresponding measurement outcome.
Interestingly, Kochen and Specker showed that this impossibility can already hold with respect
to a finite set of vectors.

Definition 1. A Kochen-Specker set (KS set for short) in H = Cn is a set S ⊆ H of unit
vectors such that there exists no function f : S → {0, 1} with the property that if b ⊆ S is an

∗Department of Computer Science, ETH Zürich, Switzerland. Email: renner@inf.ethz.ch .
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orthonormal basis of H, then ∑
u∈b

f(u) = 1

holds.

Theorem 1. [8], [6] There exists a finite KS set S ⊆ H = Cn for n ≥ 3. There exists no KS
set S ⊆ H = C2 (in other words, S = H = C2 is not a KS set).

The impossibility of consistently predicting—or predetermining—the outcomes of a set of
alternative measurements can in fact be derived from a slightly weaker notion than the one of
a KS set—namely from a set of vectors on which any “prediction function” f inevitably assigns
the value 1 to two orthogonal vectors.

Definition 2. A weak Kochen-Specker set (weak KS set for short) in H = Cn is a set S ⊆ H of
unit vectors such that for every function f : S → {0, 1} satisfying that for every orthonormal
basis b ⊆ S of H ∑

u∈b

f(u) = 1

holds, there exist vectors u, v ∈ S with 〈u|v〉 = 0 and f(u) = f(v) = 1.

Clearly, every KS set is a weak KS set (since no function f with the mentioned property
exists at all); on the other hand, every weak set S can be extended to a KS set S′ with O(|S|2n)
additional vectors. In particular, there exists a KS set in some Hilbert space H if and only if
there exists a weak KS set in H.

Lemma 2. Let H = Cn and let S ⊆ H be a finite weak KS set. Then there exists a finite KS
set S′, S ⊆ S′ ⊆ H with

|S′ \ S| ≤ |S|(|S| − 1)
2

(n− 2) . (1)

Proof. Every pair of orthonormal vectors in S can be extended to an orthonormal basis by
adding n − 2 vectors. Hence there exists a set S′ ⊇ S satisfying inequality (1) and such that
every pair of orthogonal vectors in S is contained in some orthonormal basis b ⊆ S′. Let f be
a function f : S′ → {0, 1} with

∑
u∈b f(u) = 1 for every orthonormal basis b ⊆ S′. Clearly,

the restriction of f to S has the same property, hence there exist u, v ∈ S with 〈u|v〉 = 0 and
f(u) = f(v) = 1. For the basis b ⊆ S′ containing u and v we have

∑
w∈b f(w) ≥ f(u)+f(v) = 2.

2

1.2 Non-Locality, Bell’s Inequality, and Pseudo-Telepathy

A different approach to showing the impossibility of hidden-variable explanations for the be-
havior of quantum systems was taken by Bell [1]. According to quantum mechanics, two
two-dimensional systems, called quantum bits or Qbits for short, can—even when physically
separated—be in a joint state which cannot be completely described by giving the states of
the two Qbits separately; such a state is called entangled. An example was given by Einstein,
Podolsky, and Rosen [3] as

|Φ+〉 :=
1√
2
(|00〉+ |11〉) .

Bell showed that the joint behavior with respect to different measurements on the two sub-
systems of this state cannot be explained by shared classical information under the assumption
that no communication is allowed between the two parts of the system. More precisely, Bell
derived certain inequalities—the Bell inequalities—that are satisfied for all systems the behav-
ior of which do have a classical explanation; he then showed that they are violated by the
behavior of the EPR state |Φ+〉. This non-locality or “Spukhafte Fernwirkung—spooky action
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at a distance—”, although it does not allow the parties controlling the distant systems for (in-
stant) message transmission, implies that no classical hidden-variable theory can explain their
behavior.

“Pseudo-telepathy” [2] is a deterministic version of non-local behavior: Two distant parties
unable to communicate but sharing a certain entangled quantum state—for instance n copies of
the state |Φ+〉—can satisfy some deterministic condition on their mutual input-output behavior
with certainty, whereas parties without shared entanglement—even when having agreed on a
“classical” strategy beforehand—cannot.

Definition 3. Let H = H1 ⊗ H2, and let |Ψ〉 ∈ H be a pure state. A pseudo-telepathy game
with respect to |Ψ〉 (|Ψ〉-PT game for short) is a pair (B1, B2), where Bi is a set of orthonormal
bases of Hi, such that the following holds. Let g be the following function defined on B1 ×B2:
g((b1, b2)) is the set of pairs (u1, u2) ∈ b1 × b2 satisfying

〈Ψ|u1, u2〉 6= 0 ;

the latter condition means that the measurement outcome (u1, u2) has non-zero probability if
|Ψ〉 is measured with respect to the basis b1 × b2 of H. Then we must have that, for every pair
of functions (s1, s2)—a classical strategy—, where si is defined on Bi and si(bi) ∈ bi holds for
all bi ∈ Bi, there must exist particular bases b1 ∈ B1 and b2 ∈ B2 such that

(s1(b1), s2(b2)) 6∈ g((b1, b2))

holds.

It is the goal of this paper to show a close connection between PT games and the Kochen-
Specker theorem. More precisely, we show that every weak KS set leads to a PT game
(Section 2.1), and that every PT game with respect to a maximally entangled state leads
to a KS set in some Hilbert space (Section 2.2). Two consequences are that there exists a
PT game between two parties sharing only one maximally entangled “Qtrit”—i.e., the state
(|00〉+ |11〉+ |22〉)/

√
3—, but that no such game exists (at least if only so-called von Neumann

measurements, i.e., measurements with respect to an orthonormal basis of C2, are carried out)
when only an EPR state |Φ+〉 is shared.

2 Linking the Kochen-Specker Theorem and Pseudo-Telepathy
Games

2.1 Pseudo-Telepathy from any Weak Kochen-Specker Set

Definition 4. Let H = Cn, and let c = {|0〉, |1〉, . . . , |n − 1〉} and b = {u0, u1, . . . , un−1}
be orthonormal bases of H. Then the complex conjugate basis b of b (with respect to c) is
b = {u0, u1, . . . , un−1} with ui = U |i〉, where U is the unitary operator on H satisfying b = Uc,
i.e., ui = U |i〉 for i = 0, 1, . . . , n − 1. For a set B of bases, we denote by B the set of complex
conjugate bases.

Theorem 3. Let H = Cn, S ⊆ H, c = {|0〉, |1〉, . . . , |n − 1〉} and b = {u0, u1, . . . , un−1} be
orthonormal bases of H, and let

B = {b ⊆ S | b is an orthonormal basis of H} .

Consider the state

|Ψ〉 :=
1√
n

(|00〉+ |11〉+ · · ·+ |n− 1, n− 1〉) ∈ H ⊗H .

If S is a weak KS set in H, then (B,B) is a |Ψ〉-PT game.
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Proof. Let s1 and s2 be two functions such that for all b ∈ B and b′ ∈ B, we have s1(b) ∈ b and
s2(b′) ∈ b′. Let now for u ∈ S

f(u) :=
{

1 if there exists u ∈ b ∈ B such that s1(b) = u ,
0 otherwise .

Clearly, we have for every b ∈ B that ∑
u∈b

f(u) ≥ 1

holds. Since S is a weak KS set, there exist u, u′ ∈ S with 〈u|u′〉 = 0 and f(u) = f(u′) = 1.
Let b, b′ ∈ B such that s1(b) = u, s1(b′) = u′. Clearly, we have either s2(b′) 6= u′ or s2(b′) = u′.
We show that the condition for a PT game is satisfied in both cases.

Assume first s2(b′) := u′′ 6= u′. Then u′ and u′′, which both belong to b′, are orthogonal
vectors and we get

〈Ψ|u′, u′′〉 =
1√
n

∑
i

〈i|u′〉〈i|u′′〉 =
1√
n
〈u′|u′′〉 = 0 ;

hence,
(s1(b′), s2(b′)) = (u′, u′′) 6∈ g((b′, b′))

holds since the probability of this output is 0.
If we have, on the other hand, s2(b′) = u′, we can conclude

(s1(b), s2(b′)) = (u, u′) 6∈ g((b, b′))

in a similar way since u and u′ are orthogonal. 2

A consequence of Theorems 1 and 3 is that there exists a PT game between parties sharing
only one Qtrit pair. A game using such a small amount of entanglement has not been proposed
previously.

Corollary 4. There exists a ((|00〉+ |11〉+ |22〉)/
√

3)-PT game.

In [6], a KS set in H = C3 with 117 elements is given. It has been shown later that there
exist much smaller such sets; for instance, there exists a KS set with 33 vectors belonging to
16 different orthonormal bases of H. According to Theorem 3, this leads to a PT game where
each party gets one of 16 possible inputs—one of the 16 bases; the condition for “winning the
game” is that identical bases must be answered by identical vectors, whereas bases that have a
vector in common must be answered by the overlapping vector by both parties, or not by this
vector by both parties.

2.2 Kochen-Specker Sets from Pseudo-Telepathy Games

Theorem 5. Let H = Cn, c = {|0〉, |1〉, . . . , |n− 1〉} be an orthonormal basis of H, let B1 and
B2 be two sets of orthonormal bases of H, and let

|Ψ〉 =
1√
n

(|00〉+ |11〉+ · · ·+ |n− 1, n− 1〉) ∈ H ⊗H .

Let finally S be the set
S :=

⋃
b∈B1

b ∪
⋃

b∈B2

b ⊆ H .

If (B1, B2) is a |Ψ〉-PT game, then S is a weak KS set in H.
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Proof. Let f : S → {0, 1} be a function such that for all orthonormal bases b ⊆ S, we have∑
u∈b f(u) = 1.
Let, for any b1 ∈ B1 and b2 ∈ B2, s1(b1) and s2(b2) be the elements u1 and u2 of b1 and

b2, respectively, satisfying f(u1) = f(u2) = 1. Because (B1, B2) is a |Ψ〉-PT game, there exist
particular bases b1 ∈ B1 and b2 ∈ B2 with

(s1(b1), s2(b2)) 6∈ g((b1, b2)) .

Let ui = si(bi). Now, (u1, u2) 6∈ g((b1, b2)) implies that this output pair occurs with probability
0, i.e.,

0 = 〈Ψ|u1, u2〉 =
1√
n

∑
i

〈i|u1〉〈i|u2〉 =
1√
n
〈u1|u2〉 .

We conclude that there exist two orthogonal vectors u1 and u2 in S with f(u1) = f(u2) = 1,
and this concludes the proof. 2

Theorem 5 implies that any PT game between parties sharing a state of the given form (for
instance, k copies of |Φ+〉) leads to a weak KS set in the corresponding Hilbert space (e.g.,
H = C2k

). It is, however, not clear how such a set can be derived from a PT game using a
state of a different form.

Corollary 6, which is an immediate consequence of Theorem 5 and Lemma 2, implies that
given the existence of a PT game, the corresponding Hilbert space contains a KS set (of limited
size).

Corollary 6. Let H = Cn, c = {|0〉, |1〉, . . . , |n− 1〉} be an orthonormal basis of H, let B1 and
B2 be two sets of orthonormal bases of H, and let

|Ψ〉 =
1√
n

(|00〉+ |11〉+ · · ·+ |n− 1, n− 1〉) ∈ H ⊗H .

Let S be the set
S :=

⋃
b∈B1

b ∪
⋃

b∈B2

b ⊆ H .

If (B1, B2) is a |Ψ〉-PT game, then there exists a KS set S′ with S ⊆ S′ ⊆ H and such that

|S′ \ S| ≤ |B1| · |B2| · n3

holds.

Proof. According to Theorem 5, S is a weak KS set; more precisely, there exist, for every “KS
function” f , u ∈ b ∈ B1 and v ∈ b′ ∈ B2 with 〈u|v〉 and f(u) = f(v) = 1. As in Lemma 2, S
can be extended by at most∣∣∣∣∣∣

⋃
b∈B1

b

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

⋃
b′∈B2

b′

∣∣∣∣∣∣ · (n− 2) ≤ |B1|n · |B2|n · (n− 2)

vectors to a set S′ such that every orthogonal pair u, v with u ∈ b ∈ B1 and v ∈ b′ ∈ B2 is in
an orthonormal basis b ⊆ S′ of H. Hence S′ is a KS set. 2

Corollary 7 is a consequence of Corollary 6 and Theorem 1 and suggests—together with
Corollary 4—that the minimal quantum primitive allowing for a PT game is a maximally
entangled Qtrit pair. (Note that Corollary 7 does not imply that the behavior of |Φ+〉 is local :
This state does violate Bell’s inequality.)
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Corollary 7. There exists no ((|00〉+ |11〉)/
√

2)-PT game.

Theorem 5 can be used to construct new KS sets from PT games. In Example 1, this is
done for a game proposed by Brassard, Cleve, and Tapp [2] (see also [4]), which uses 4 EPR
pairs as a resource. The resulting KS set in H = C16 is highly symmetric (but rather large).

Example 1. In [2], the following PT game was introduced. For n ∈ N, N = 2n, let

B1 = B2 =


 1√

N

∑
i∈{0,1}n

(−1)i·j⊕z(i)|i〉

∣∣∣∣∣∣ j ∈ {0, 1}n


∣∣∣∣∣∣ z : {0, 1}n → {0, 1}

 ;

these bases arise when the Hadamard transform is applied to the bases {±|i〉} of H = CN .
In [4] it was shown that for

|Ψ〉 = |Φ+〉⊗n =
1√
N

∑
i∈{0,1}n

|i, i〉 ,

and for N ≥ 16, this is a |Ψ〉-PT game. Hence Theorem 5 implies that in this case the set

S =
⋃

b∈B1

b ∪
⋃

b∈B2

b =

 1√
N

∑
i∈{0,1}n

(−1)z(i)|i〉

∣∣∣∣∣∣ z : {0, 1}n → {0, 1}


is a weak KS set. It is in fact a KS set since every pair of orthogonal vectors can be extended to
an orthonormal basis of H with vectors in S: The idea is, given two orthogonal vectors u and
v corresponding to N -bit strings z1 and z2, respectively, with dH(z1, z2) = N/2—which holds
because u and v are orthogonal—, to choose N − 2 additional strings z such that the strings
z1 ⊕ z are the code words of a dual Hamming code. Hence, for instance, the set

S =

{
1
4

15∑
i=0

±|i〉

}
is a—highly symmetric—KS set in H = C16 with 216 elements (corresponding to the different
choices of the 16 signs).
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