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Abstract

In order to communicate secretly in the strong sense of information theory, two parties have
to share a secret key about which a possible adversary has (virtually) no information. Such
a key can be generated based on correlated classical or quantum information shared between
the parties. The relationship that has recently been shown between these two models suggests
that the concept of bound entanglement, i.e., shared quantum information between the parties
which can, however, not be used to generate a quantum key, has a classical counterpart, called
“bound information.” Such information is a classical correlation between the players’ pieces of
information (from a possible adversary’s viewpoint) that can, however, not be used to generate
a secret key. The existence of such information, which could not be proven so far, would be
somewhat surprising from the purely classical perspective. In this paper we take a step towards
proving the existence of bound information. More specifically, a bidirectional correspondence
between quantum and classical key bits (of a certain quality, called fidelity) is shown. Here, the
connection between quantum and classical information is established by measuring the quantum
system in a fixed basis.

1 Introduction

The separability problem, i.e., the the question whether a state of a composite quantum system
contains quantum correlation or entanglement, as well as the distillability problem, i.e., the question
whether a state of a composite quantum system can be transformed to an entangled pure state
using local operations, are fundamental and well studied, but still unresolved problems of quantum
information theory [1]. Recently, it turned out that both of these questions are closely related to
classical information-theoretic notions, namely the intrinsic information and the secret-key rate,
which are basic quantities in the theory of information-theoretic secret key agreement from common
information.

The intrinsic information as well as the secret-key rate are measures on probability distributions:
While the former quantifies some kind of correlation between random variables having a certain
distribution, the latter is a measure for the maximal rate at which two parties, connected by an
insecure (but authentic) channel, can generate common secret bits, if they have access to some
correlated information specified by a probability distribution.

The link between these information-theoretic measures and the properties of a quantum state is
mainly motivated by the fact that any probability distribution can be considered as resulting from
the measurement of a certain quantum state. In [4], and later in [2], it has been shown that the
inseparability of a mixed quantum state implies that the intrinsic information of a corresponding
probability distribution is positive, and vice versa. On the other hand, evidence has been given in
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the same papers that a similar relation holds between the distillability of a mixed quantum state
and the secret-key rate of a corresponding distribution.

In this work we will focus on this latter relation, that is, the parallels between distillability
and secret key agreement. We enlighten the close link between the outcome of quantum distillation
protocols, i.e., almost perfect qubit pairs, and the outcome of classical secret key agreement protocols,
i.e., two classical bits which are equal with high probability and on which an adversary only has
negligible information. Our result is a step towards a proof for the existence of bound information,
the classical counterpart of bound entanglement.

2 Classical Secret Key Agreement and Quantum Distillation

In [7], Maurer proposed the following setting for information-theoretically secure secret key agree-
ment. Consider two parties (called Alice and Bob), connected by an authentic, but otherwise fully
insecure communication channel, such that a possible adversary (Eve) learns the whole commu-
nication between them. Additionally, the players (including the adversary) have access to some
correlated information which is given by repeated realizations of random variables X (for Alice), Y
(Bob) and Z (Eve) jointly distributed according to PXY Z . The goal of Alice and Bob is to generate
a common secret key, meaning that they each end up with an identical random bit-string on which
Eve has virtually no information.

Similarly, quantum distillation can be described as a game between two players in a quantum
system who are connected by a classical communication channel and who can perform arbitrary
local quantum operations on their respective subsystems. Additionally, the players have access to
mixed quantum states ρ lying in a product space HA ⊗HB where Alice controls HA and Bob HB.
The goal of them is to generate fully entangled qubit pairs.

In [3], it has been shown that for a given probability distribution PXY Z , secret key agreement is
possible if and only if there exists a so called binarization thereof such that the resulting distribution
corresponds to a correlated secret bit pair. This will be made more precise by the following definition
and theorem.

Let PX̄Ȳ Z be a joint probability distribution of a triple of random variables (X̄, Ȳ , Z) where X̄
and Ȳ are binary, i.e., X̄ = Ȳ = {0, 1}.

Definition 2.1. PX̄Ȳ Z is said to be a common secret bit pair distribution (CSBD) with fidelity f
if the random variables X̄, Ȳ and Z satisfy

P [X̄ = Ȳ ] ≥ f

|P [X̄ = Ȳ = 0]− P [X̄ = Ȳ = 1]| ≤ 1− f

min(H(X̄|Z),H(Ȳ |Z)) ≥ f.

Theorem 2.2. A probability distribution PXY Z allows for secret key agreement if and only if for
each ε > 0 there exists a number N and a binarization, i.e., a pair of ternary-output channels
(PX̄|XN , PȲ |Y N ) with ranges X̄ = Ȳ = {0, 1,∆}, such that P [X̄ 6= ∆ 6= Ȳ ] > 0 and PX̄Ȳ ZN |X̄ 6=∆ 6=Ȳ

is a CSBD with fidelity f = 1− ε.

In [6], a similar statement has been proven for the quantum case. Here, fully entangled qubit
pairs take the role of the correlated secret bit pairs in the classical setting. In order to use the same
terminology, we will give a definition of fidelity for entangled qubits. Let therefore HA and HB be
2-dimensional Hilbert spaces with basis {|0〉, |1〉} and

|ϕ〉 :=
1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)
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a Bell state in the product space HA ⊗HB.
Since any mixed state in a Hilbert space H can be expressed as a pure state in a product space

H⊗HE where HE has sufficiently large dimension, we will in the following consider pure states in
HA ⊗HB ⊗HE instead of mixed states in HA ⊗HB.

Definition 2.3. |Ψ〉 ∈ HA ⊗HB ⊗HE is called entangled qubit state with fidelity f if

‖|Ψ〉 − |ϕ〉 ⊗ |κ〉‖2 ≤ 1− f

for an appropriate state |κ〉 ∈ HE.

Note that, expressed in terms of mixed states, the condition that f ≈ 1 for a quantum state |Ψ〉
is equivalent to ‖ρ− P|ϕ〉‖ ≈ 0 for the density matrix ρ := trHE

(P|Ψ〉).

Theorem 2.4. A quantum state |Ψ〉 ∈ HA⊗HB⊗HE is distillable if and only if for each ε > 0 there
exists a number N and a pair of projectors (PA, PB) onto 2-dimensional subspaces of HN

A and HN
B ,

respectively, such that |Ψ̄〉 := PA⊗PB ⊗1N
HE

|Ψ〉N is an entangled qubit state with fidelity f = 1− ε.

In the next section we will see that correlated secret bit pairs and fully entangled qubit pairs are
closely connected. This, together with the above two theorems, suggests that there exists a strong
relation between the possibility of secret key agreement for a certain probability distribution and
the distillability of a corresponding quantum state.

3 The Link Between Qubits and Classical Secret Bits

A measurement in a quantum system with respect to a fixed basis {|x〉}x∈X can be considered as
a mapping between the set of quantum states of the system to the set of probability distributions
over all possible measurement outcomes, i.e.,

M : |ψ〉 7−→ PX

with PX(x) = |〈ψ|x〉|2 for all x ∈ X . This function is not one-to-one. However, for an orthonormal
basis {|x〉}x∈X it is a bijection between the set of all states |ψ〉 =

∑
x ax|x〉 with real non-negative

coefficients ax and the set of all probability distributions over X with inverse

Q := M−1 : PX 7−→ |ψ〉 :=
∑

x

√
PX(x) · |x〉.

In the previous section, we have seen that the question whether a given quantum state is distillable
can be reduced to the question whether there exists some projection onto a fully entangled qubit
pair. Moreover, a similar reduction holds for the problem of deciding whether secret key agreement
for a given probability distribution is possible. In this case, a correlated secret bit pair takes the role
of the fully entangled qubit pair. The two concepts are, however, strongly related. The following
theorem states that the bijection Q maps classically correlated secret bit pairs to entangled qubit
pairs.

Theorem 3.1. If PX̄Ȳ Z is a CSBD with fidelity 1 − ε, then |Ψ〉 := Q(PX̄Ȳ Z) is a entangled qubit
pair with fidelity 1− c · ε (for some constant c).

On the other hand, if a state |Ψ〉 ∈ HA⊗HB ⊗HE is an entangled qubit pair with fidelity 1− ε2,
then PX̄Ȳ Z := M(Ψ) is a CSBD with fidelity 1− c′ · ε (for some constant c′).
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The second part of this theorem (we will not give the proof of this part here due to space
limitations) can be interpreted as the well-known fact that two parties can generate a secret key bit
by measuring a fully entangled quantum bit pair of which each of them controls one subsystem. On
the other hand, it is intuitively clear that the translation of a perfectly correlated secret bit pair
(i.e., a CSBD with fidelity 1) to a quantum state leads to a Bell state. However, the interesting fact
is that this also holds for a CSBD with fidelity smaller than 1, and that the fidelity of the resulting
entangled quantum state is independent of the size of the range of the random variable Z (which
in the classical setting specifies the knowledge of an adversary). This turns out to be important for
proving relations between quantum distillation and classical secret-key agreement.

Proof. Let PX̄Ȳ Z be a CSBD with fidelity f = 1− ε, i.e.,

P [X̄ = Ȳ ] ≥ 1− ε (1)
|P [X̄ = Ȳ = 0]− P [X̄ = Ȳ = 1]| ≤ ε (2)

H(X̄|Z) ≥ 1− ε (3)
H(Ȳ |Z) ≥ 1− ε. (4)

Inequalities (1) and (2) directly imply that

|P [X̄ = 0]− P [X̄ = 1]| ≤ 2ε. (5)

In addition, assume without loss of generality that P [X̄ = 0] ≥ P [X̄ = 1], and let X̂ be a binary
random variable which only depends on X̄ according to the conditional probability distribution

PX̂|X̄(x̂, x̄) =


1− δ if x̄ = 0 and x̂ = 0
δ if x̄ = 0 and x̂ = 1
1 if x̄ = 1 and x̂ = 1
0 otherwise

where δ is chosen such that P [X̂ = 0] = P [X̂ = 1]. Note that from (5), δ ≤ 2ε. Using (3) we further
find

ε ≥ 1−H(X̄|Z) ≥ H(X̄)−H(X̄|Z) = I(X̄;Z) ≥ I(X̂;Z) (6)

where the last inequality follows from the fact that Z −→ X̄ −→ X̂ is a Markov chain. This
mutual information can be written as a sum over the ranges of X̂ and Z, i.e., the sets {0, 1} and Z,
respectively,

I(X̂;Z) = H(Z)−H(Z|X̂)

=
∑

x∈{0,1}

P [X̂ = x]
(
H(Z)−H(Z|X̂ = x)

)
=

∑
x∈{0,1}

∑
z∈Z

1
2
(
−P [Z = z] log2 P [Z = z] + P [Z = z|X̂ = x] log2 P [Z = z|X̂ = x]

)
,

where in the last line we have used that both P [X̂ = 0] and P [X̂ = 1] are equal to 1
2 . Hence, with

pz := P [Z = z] = P [X̂ = 0, Z = z] + P [X̂ = 1, Z = z]
εz := P [X̂ = 0, Z = z]− P [X̂ = 1, Z = z]

inequality (6) gets

1
2

∑
z∈Z

(
−pz log2 pz + (pz + εz) log2(pz + εz)

)
+

(
−pz log2 pz + (pz − εz) log2(pz − εz)

)
≤ ε.
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A simple calculation shows that the terms in this sum can be lower bounded by a quadratic expression
in εz,

ε2z
pz ln 2

≤
(
−pz log2 pz + (pz + εz) log2(pz + εz)

)
+

(
−pz log2 pz + (pz − εz) log2(pz − εz)

)
for all z ∈ Z, and hence

1
2

∑
z∈Z

ε2z
pz ln 2

≤ ε.

In terms of probabilities, we thus have∑
z∈Z

kz ·
(√

P [X̂ = 0, Z = z]−
√
P [X̂ = 1, Z = z]

)2 ≤ 4ε ln 2

with

kz :=

(√
P [X̂ = 0, Z = z] +

√
P [X̂ = 1, Z = z]

)2

P [X̂ = 0, Z = z] + P [X̂ = 1, Z = z]

and, since kz ≥ 1 for all z ∈ Z,∑
z∈Z

(
√
P [X̂ = 0, Z = z]−

√
P [X̂ = 1, Z = z])2 ≤ 4ε ln 2. (7)

Let us define a vector |Ψ′〉 in HA ⊗HB ⊗HE ,

|Ψ′〉 := |0, 0〉 ⊗
∑
z∈Z

√
P [X̂ = 0, Z = z]|z〉+ |1, 1〉 ⊗

∑
z∈Z

√
P [X̂ = 1, Z = z]|z〉.

Then, setting

|κ〉 :=
∑
z∈Z

1√
2

(√
P [X̂ = 0, Z = z] +

√
P [X̂ = 1, Z = z]

)
· |z〉,

and making use of inequality (7) results in an upper bound for the distance between the Bell state
and the state |Ψ′〉,

‖|Ψ′〉 − |ϕ〉 ⊗ |κ〉‖2 ≤ 2 ln 2 · ε. (8)

On the other hand, starting from (1) and δ ≤ 2ε, a straightforward calculation (which is however
omitted in this extended abstract) leads to

‖|Ψ〉 − |Ψ′〉‖2 ≤ 12ε. (9)

Combining (8) and (9) concludes the proof.

4 Bound Information

In the theory of information-theoretically secure secret-key agreement, it is an open problem whether
for all probability distribution PXY Z with positive intrinsic information secret-key agreement is
possible. In analogy to bound entanglement, i.e., entanglement that can not be distilled, probability
distributions having positive intrinsic information but which can not be used for secret key agreement
are called bound.
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In [2] and [4], some evidence for the existence of bound information has been given. In the
following, we will discuss the consequences of Theorem 3.1 with respect to this question.

Let |Ψ〉 ∈ HA⊗HB⊗HE be a bound entangled quantum state and PXY Z := M(|Ψ〉) a probability
distribution resulting from measurement of |Ψ〉 with respect to some basis. Moreover, for a given
binarization (PX̄|XN , PȲ |Y N ) (where n ∈ N) of this distribution, let |Ψ̄〉 := Q(PX̄Ȳ ZN |X̄ 6=∆ 6=Ȳ ).

We now come to the main statement of this section. Consider the following diagram.

PXY Z

(P
X̄|XN ,P

Ȳ |Y N )
−−−−−−−−−−→ PX̄Ȳ ZN |X̄ 6=∆ 6=ȲxM

yQ=M−1

|Ψ〉 (PA,PB)−−−−−→ |Ψ̄〉

(10)

If for any binarization (PX̄|XN , PȲ |Y N ) there is a pair of 2-dimensional projectors (PA, PB) of |Ψ〉N
such that (10) is commutative, then PXY Z is bound.

To see this, assume by contradiction that secret key agreement is possible for PXY Z . Then, from
Theorem 2.2, for any ε > 0 there exists a number N and a binarization (PX̄|XN , PȲ |Y N ) such that
PX̄Ȳ ZN |X̄ 6=∆ 6=Ȳ is a CSBD with fidelity 1 − ε. Theorem 3.1 then states that |Ψ̄〉 is an entangled
qubit pair with fidelity 1 − c · ε. Since |Ψ̄〉 is a projection of |Ψ〉N onto two 2-dimensional Hilbert
spaces, this means, according to Theorem 2.4, that the state |Ψ〉 is distillable, which contradicts the
assumption that |Ψ〉 is bound entangled.
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