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Abstract

We propose a new measure for conditional mutual information, called the reduced intrinsic informa-
tion. Given a tripartite probability distribution PXY Z , the new measure is an upper bound on the
rate S(X; Y ||Z) at which two parties, knowing realizations of X and Y , respectively, can generate
secret key bits unknown to a third party having access to Z. Moreover, the new bound on S is
strictly stronger than the best bound known previously, namely the intrinsic information shared
by the parties. In fact, we show that since the new measure takes into account a greater class of
potential adversarial strategies for minimizing the secret correlation between the legitimate partners,
it can be smaller than the old bound by an arbitrarily large factor.

1 The Reduced Intrinsic Information

In the context of information-theoretic secret key agreement from common information [6], it is a central
problem to measure the extractable secret correlation of a tripartite probability distribution. More
precisely, assume that two parties Alice and Bob have access to repeated independent realizations of
random variables X and Y , respectively, whereas an adversary Eve knows the realizations of Z. Assume
further that Alice and Bob are connected by an noiseless and authentic but otherwise completely insecure
channel. For this setting, the secret-key rate S(X;Y ||Z) has been defined as the maximal rate at which
Alice and Bob can generate a mutual and highly secret key [6]. It is a fundamental problem to express
S(X;Y ||Z) in terms of the distribution PXY Z , in particular, to find upper bounds on S or to characterize
distributions with S > 0. The best upper bound known so far that is expressible in terms of basic
information-theoretic quantities of the distribution PXY Z is the intrinsic information I(X;Y ↓Z) [7],
which is derived from the facts that the conditional information I(X;Y |Z) is an upper bound on S [6],
and that it is one possible strategy of Eve, trying to minimize the mutual information shared by the
legitimate partners, to process her data, i.e., send Z through a channel PZ|Z :1

I(X;Y↓Z) = inf
PZ|Z

(I(X;Y |Z)) . (1)

We have [7]
S(X;Y ||Z) ≤ I(X;Y↓Z) ,

and it has been an open problem whether the two quantities are always equal (or, if not, at least non-zero
simultaneously).

The following observation made in [8] shows, however, that S(X;Y ||Z) = I(X;Y↓Z) cannot always
hold since the two quantities have different properties. For four random variables X, Y , Z, and U , we
always have

S(X;Y ||ZU) ≥ S(X;Y ||Z)−H(U) ; (2)
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on the other hand,
I(X;Y↓ZU) < I(X;Y↓Z)−H(U) (3)

is possible.
The proof of property (2) is based on so-called privacy amplification [1], often described as the final

step of a key-agreement protocol necessary when Alice and Bob already share a common key which is,
however, only partially secret. The fact is used that in the special case where this raw key consists
of many parts about which the adversary has independent information, the length of the extractable
fully-secret key is roughly equal to the Shannon entropy of the original key from Eve’s point of view. (A
full proof of (2) is given in [8].) On the other hand, an example showing that inequality (3) can hold is
given below.

Inequality (2), together with the fact that it can be violated by the intrinsic information, motivates
the definition of a new measure which is, first of all, a strictly stronger upper bound on S(X;Y ||Z). Its
definition is based on the observation that we have for any distribution PXY Z

S(X;Y ||Z) ≤ inf
PU|XY Z

(S(X;Y ||ZU) + H(U))

≤ inf
PU|XY Z

(I(X;Y↓ZU) + H(U))

=: I(X;Y↓↓Z) ,

where we call the latter the reduced intrinsic information between X and Y , given Z. The new measure
is an upper bound on S(X;Y ||Z), and, as mentioned, we will show later that it is strictly stronger than
the previous one, i.e., that

I(X;Y↓↓Z) < I(X;Y↓Z)

can hold.

2 Properties of the Reduced Intrinsic Information

2.1 Basic Inequalities

The reduced intrinsic information can be written as

I(X;Y↓↓Z) = inf
PU|XY Z

(
inf

PZ|ZU

(I(X;Y |Z)) + H(U)

)
.

It has the following properties.

Theorem 1. Let X, X ′, Y , Y ′, Z, and U be arbitrary random variables. Then we have

1. I(XX ′;Y Y ′↓↓Z) ≥ I(X;Y↓↓Z)

2. I(X;Y↓↓Z) ≤ I(X;Y↓Z) ≤ min (I(X;Y ) , I(X;Y |Z))

3. I(X;Y↓↓Z) ≥ S(X;Y ||Z) ≥ I(X;Y )− I(X;Z)

4. I(X;Y↓↓ZU) ≤ I(X;Y↓↓Z)

5. I(X;Y↓↓ZU) ≥ I(X;Y↓↓Z)−H(U)

6. I(X;Y↓↓Z) = infPZ|Z
(I(X;Y↓↓Z)) .

Proof.

1. Follows from the corresponding property of the conditional mutual information I(X;Y |Z).

2. For the first inequality, choose U such that H(U) = 0; for the second, let PZ|Z be such that
H(Z) = 0 and such that Prob[Z = Z] = 1, respectively.

3. The first inequality was shown in the previous section, the second one follows from a result by
Csiszár and Körner [3] (see [6]).
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4. We have

I(X;Y↓↓ZU) = inf
PU′|XY ZU

(I(X;Y↓ZUU ′) + H(U ′))

≤ inf
PU′|XY ZU

(I(X;Y↓ZU ′) + H(U ′))

= inf
PU′|XY Z

(I(X;Y↓ZU ′) + H(U ′))

= I(X;Y↓↓Z) .

5. We have

I(X;Y↓↓Z) = inf
PV |XY Z

(I(X;Y↓ZV ) + H(V ))

≤ inf
PU′|XY (Z,U)

(I(X;Y↓ZUU ′) + H(UU ′))

≤ inf
PU′|XY (Z,U)

(I(X;Y↓ZUU ′) + H(U ′) + H(U |U ′))

≤ I(X;Y↓↓ZU) + H(U) .

The first inequality holds since the minimization is restricted to random variables V containing U
(i.e., V = UU ′).

6. Let PZ|Z be a conditional probability distribution. Then

I(X;Y↓↓Z) = I(X;Y↓↓ZZ) ≤ I(X;Y↓↓Z)

holds because of 4.

2

The properties 5. and 6. of Theorem 1 imply that the reduced intrinsic information cannot be further
reduced by the same techniques that led to the reduction of I(X;Y |Z) to I(X;Y↓Z) and to I(X;Y↓↓Z).

Let us now address the question whether I(X;Y↓↓Z) is a better bound on S(X;Y ||Z) than I(X;Y↓
Z), i.e., under which circumstances I(X;Y↓↓Z) < I(X;Y↓Z) holds.

2.2 The Power of Multiple Local Information Minimization

Intuitively speaking, I(X;Y ↓ZU) can potentially be smaller than I(X;Y ↓Z) by two reasons: First,
additional knowledge U is simply by itself an advantage for the adversary (who tries to minimize the
correlation between Alice and Bob) and can lead to a reduction of intrinsic information by at most
H(U); secondly, however, it can have the additional advantage to provide information allowing for
better processing the previous knowledge Z. Taken together, these two advantages (again, from the
viewpoint of the adversary) can reduce the intrinsic information by more than H(U); this fact justifies
the new measure which takes this effect into account. In other words, the definition of I(X;Y ↓↓Z)
considers multiple adaptive “local” minimizations instead of only one simple global minimization of
mutual information (as in the definition of I(X;Y↓Z)). It is important to note in this context that Eve,
knowing Z but not U , cannot actually apply these strategies; their mere existence, however, allows for
improving the bound on S.

Theorem 2. Let PXY Z be a distribution, and let E1, E2, . . . , En be disjoint events with probabilities
Prob [Ei] = pi such that

∑
i pi = 1. Then

I(X;Y↓↓Z) ≤
n∑

i=1

piI(X;Y↓Z | Ei) + H([p1, p2, . . . , pn]) .

Remark. One possibility of choosing the events Ei is by determining a partition of the range X × Y of
XY into disjoint rectangles

X × Y =
⋃

Xi × Yi
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Figure 1: Partitioning a distribution PXY Z into (conditional) distributions P i := PXY Z|X∈Xi×Yi
: When

knowing i, Eve can minimize the information shared by Alice and Bob in every rectangle separately.

(see Figure 1). Then, I(X;Y ↓↓Z) is achieved, roughly speaking, when Eve minimizes the information
between Alice and Bob in every rectangle separately.
Proof of Theorem 2. Let U be the random variable indicating which of the (disjoint) events occurs, i.e.,
U = i if and only if Ei occurs. Then

nX
i=1

piI(X; Y↓Z | Ei) + H([p1, . . . , pn]) =

nX
i=1

PU (i) · inf
P

Z|Z
(I(X; Y |Z , U = i)) + H(U)

≥ inf
P

Z|ZU

(I(XU ; Y U |Z)) + H(U)

≥ I(XU ; Y U↓↓Z)

≥ I(X; Y↓↓Z) .

2

In order to show the gap between I(X;Y ↓↓ Z) and I(X;Y ↓ Z) explicitly, we now consider the
special case where PXY Z is composed by two distributions P 0

XY Z = PXY Z|E0 and P 1
XY Z = PXY Z|E1 . If

Eve’s optimal information-minimizing channels are different for the two distributions P 0 and P 1, then
I(X;Y↓↓Z) is generally smaller than I(X;Y↓Z) since it takes into account strategies using two separate
minimization channels instead of just one.

Theorem 3. Let PXY Z be a distribution, let X and Y be the ranges of X and Y , respectively, let
X = X0 ∪ X1 (where X0 and X1 are disjoint) and analogously Y = Y0 ∪ Y1, such that PXY Z(x, y, z) = 0
if x ∈ X0 and y ∈ Y1 or vice versa, and let p = Prob [x ∈ X0]. We denote by P 0

XY Z = PX0Y 0Z0 the
distribution PXY Z|E0 , and analogously for E1. (See Figure 2.) Then we have

I(X;Y↓↓Z) ≤ p · inf
P

Z0|Z0

(
I(X0;Y 0|Z0

)
)

+ (1− p) · inf
P

Z1|Z1

(
I(X1;Y 1|Z1

)
)

+ h(p)

and
I(X;Y↓Z) ≥ inf

PZ|Z

(
p · I(X0;Y 0|Z) + (1− p) · I(X1;Y 1|Z)

)
.

Figure 2: The distribution PXY Z as a product of two distributions P 0
XY Z and P 1

XY Z .

4



Proof. The first statement follows directly from Theorem 2. For the second part, let again U ∈ {0, 1}
be the random variable indicating whether x ∈ X0 or x ∈ X1 holds. Then

I(X;Y↓Z) = inf
PZ|Z

(I(X;Y |Z))

≥ inf
PZ|Z

(I(XU ;Y U |ZU))

= inf
PZ|Z

(PU (0) · I(X;Y |Z, U = 0) + PU (1) · I(X;Y |Z, U = 1))

= inf
PZ|Z

(
p · I(X0;Y 0|Z) + (1− p) · I(X1;Y 1|Z)

)
.

2

Theorem 3 allows for separating I(X;Y ↓↓Z) from I(X;Y ↓Z) as follows. Consider for instance the
following special case of a distribution composed by two distributions with different minimizing channels
PZ|Z .

Let p = 1/2, X0 = Y0 = {0, 1, . . . , n − 1}, X1 = Y1 = {n, n + 1, . . . , 2n − 1}, Z = {0, 1, . . . , n − 1}.
For x ∈ X0 and y ∈ Y0 let

PXY Z(x, y, z) =
1
2
P 0

XY Z(x, y, z) =
{

1/2n2 if z ≡ x + y (mod n)
0 otherwise

and for x ∈ X1 and y ∈ Y1, let

PXY Z(x, y, z) =
1
2
P 1

XY Z(x, y, z) = 1/2n if x ≡ y ≡ z (mod n)

and PXY Z(x, y, z) = 0 otherwise. The marginal distribution PXY is represented in the following table.

X X0 X1

Y 0 · · · n− 1 n n + 1 · · · 2n− 1
0 1

2n2 · · · 1
2n2 0 0 · · · 0

Y0

...
...

...
...

...
...

n− 1 1
2n2 · · · 1

2n2 0 0 · · · 0
n 0 · · · 0 1

2n 0 · · · 0
n + 1 0 · · · 0 0 1

2n 0

Y1

...
...

...
...

. . .
...

2n− 1 0 · · · 0 0 0 · · · 1
2n

According to Theorem 3, we have for this distribution

I(X;Y↓↓Z) ≤ 1 (4)

whereas
I(X;Y↓Z) ≥ log2 n

2
. (5)

The first inequality (4) follows from the fact that both distributions P 0 and P 1 have vanishing intrinsic
information: For P 0, the channel PZ|Z forgetting Z completely brings the conditional information down
to 0 (note that in this case, X and Y are independent) whereas for P 1, the channel which leaves Z
unchanged achieves this. In fact, equality holds in (4) since S(X;Y ||Z) ≥ 1: One secret-key bit, namely
the bit U , can be extracted from X and Y without any communication.
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In order to prove the second inequality (5), let for a channel PZ|Z be z ∈ Z, ai := PZ|Z(z, i), and
a :=

∑
ai. Then we have

I(X;Y |Z = z) ≥ 1
2
(I(X0;Y 0|Z = z) + I(X1;Y 1|Z = z))

=
1
2
(log2 n−H([a1/a, . . . , an−1/a]) + H([a1/a, . . . , an−1/a]))

=
log2 n

2
,

which concludes the argument since z was an arbitrary value of Z.
We have thus seen that I(X;Y ↓↓Z) is a new upper bound on S(X;Y ||Z) that can be smaller than

the previous bound I(X;Y↓Z) by an arbitrarily large factor.

3 Concluding Remarks

We have defined a new measure for the conditional mutual information, the reduced intrinsic information.
The measure proved useful for quantifying the secret correlation between two parties Alice and Bob in the
presence of an adversary Eve: It is an upper bound on the rate at which secret-key bits are extractable
from the correlation by a protocol using public communication. More specifically, the new measure is
a strictly better bound than the (previously known) intrinsic information; this is of interest since the
latter is shown in [8] to be a lower bound on the number of secret-key bits required to generate the
correlation PXY Z (or a better one from Alice and Bob’s point of view) by public communication. This
means that some distributions are wasteful with secret correlations in the sense that not all secret-key
bits required to generate them are extractable.

This fact is not very surprising when seen in the light of the parallels pointed out in [5] between
secret-key agreement from classical information (as studied in this article) on one hand and quantum
distillation on the other: The gap between the rates at which secret-key bits can be extracted from a
distribution and at which such bits are required to generate the same distribution is reflected by the
gap between two important measures for entanglement of bipartite quantum states, namely between
entanglement of formation and distillable entanglement. Moreover, the new measure can be used to
prove, at least asymptotically, the classical analog to so-called bound (non-distillable) entanglement:
intrinsic information shared by Alice and Bob useless for generating a secret key [8].
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