
Error-free Multi-valued Broadcast and
Byzantine Agreement with Optimal

Communication Complexity

Arpita Patra

Department of Computer Science, ETH Zurich, Switzerland
arpita.patra@inf.ethz.ch

Abstract. In this paper we present first ever error-free, asynchronous
broadcast (called as A-cast) and Byzantine Agreement (called as ABA)
protocols with optimal communication complexity and fault tolerance.
Our protocols are multi-valued, meaning that they deal with ℓ bit input
and achieve communication complexity of O(nℓ) bits for large enough
ℓ for a set of n ≥ 3t + 1 parties in which at most t can be Byzantine
corrupted. Previously, Patra and Rangan (Latincrypt’10, ICITS’11) re-
ported multi-valued, communication optimal A-cast and ABA protocols
that are only probabilistically correct.
Following all the previous works on multi-valued protocols, we too follow
reduction-based approach for our protocols, meaning that our protocols
are designed given existing A-cast and ABA protocols for small message
(possibly for single bit). Our reductions invoke less or equal number of
instances of protocols for single bit in comparison to the reductions of
Patra and Rangan. Furthermore, our reductions run in constant expected
time, in contrast to O(n) of Patra and Rangan (ICITS’11). Also our
reductions are much simpler and more elegant than their reductions.
By adapting our techniques from asynchronous settings, we present new
error-free, communication optimal reduction-based protocols for broad-
cast (BC) and Byzantine Agreement (BA) in synchronous settings that
are constant-round and call for only O(n2) instances of protocols for sin-
gle bit. Prior to this, communication optimality has been achieved by
Fitzi and Hirt (PODC’06) who proposed probabilistically correct multi-
valued BC and BA protocols with constant-round and O(n(n + ·)) (·
is the error parameter) invocations to the single bit protocols. Recently,
Liang and Vaidya (PODC’11) achieved the same without error prob-
ability. However, their reduction calls for round complexity and num-
ber of instances that are function of the message size, O(

√
ℓ + n2) and

O(n2
√
ℓ+ n4), respectively where ℓ = ­(n6).

Keywords: Multi-valued, Broadcast, Byzantine Agreement, A-cast, Asynchronous,

Communication Complexity, Expected Running Time

1 Introduction

The problem of Broadcast (BC) and Byzantine Agreement (BA) (also popu-
larly known as consensus) were introduced in [PSL80] and since then they have



been considered as the most fundamental problems in distributed computing.
In brief, a BC protocol allows a special party among a set of parties, called
sender, to send some message identically to all other parties. The challenge lies
in achieving the above task despite the presence of some faulty parties (possibly
including the sender), who may deviate from the protocol arbitrarily. The BA
primitive is slightly different from BC. A BA protocol allows a set of parties,
each holding some input bit, to agree on a common bit, even though some of
the parties may act maliciously in order to make the honest parties disagree.
The BC and BA primitives have been used as building blocks in several im-
portant secure distributed computing tasks such as Secure Multiparty Com-
putation (MPC) [BOGW88,BKR94,RBO89], Verifiable Secret Sharing (VSS)
[CGMA85,BOGW88,RBO89] etc.

An important, practically motivated variant of BC and BA problem are asyn-
chronous broadcast (known as A-cast) and asynchronous BA (known as ABA)
that study the conventional BC and BA problems in asynchronous network set-
tings. It is well-known that asynchronous network setting is considered to be
more realistic than synchronous network setting. The works of [BO83,Rab83,Bra84],
[FM88,CR93,Can95,ADH08,PW92,PR11] have reported different A-cast and ABA
protocols. In this paper, we focus on the communication complexity of error-free
A-cast and ABA protocols and present first ever optimal protocols.

The Model. We follow the standard network model of [PSL80] for synchronous
network and [CR93,Can95] for asynchronous network. Our A-cast, ABA, BC and
BA protocols are carried out among a set of n parties, say P = {P1, . . . , Pn},
where every two parties are directly connected by an authenticated and secure
channel and at most t out of the n parties can be under the influence of a
computationally unbounded Byzantine adversary, denoted as At. The adversary
corrupts the parties adaptively at any point during the course of the protocol
execution and the choice may base on the information gathered so far by the
adversary. We assume that n = 3t+ 1 which is the minimum number of parties
required to design error-free A-cast, ABA, BC and BA protocols [Lyn96,PSL80].
The parties not under the influence of At are called honest or uncorrupted.

We do not make any cryptographic assumptions such as public key infras-
tructure (PKI) etc in our protocols. All our protocols are randomized.

Definitions. We now define A-cast and ABA formally.

Definition 11 (A-cast [Can95]) Let ¦ be an asynchronous protocol executed
among the set of parties P and initiated by a special party called sender S ∈ P,
having input m (the message to be sent). ¦ is an A-cast protocol tolerating At

if the following hold, for every behavior of At and every input m:

– Termination: If S is honest, then all honest parties in P will eventually
terminate ¦. If any honest party terminates ¦, then all other honest parties
will eventually terminate ¦.

– Correctness: If the honest parties terminate ¦, then they do so with a
common output m★. Furthermore, if the sender S is honest then m★ = m.



Definition 12 (ABA [CR93]) Let ¦ be an asynchronous protocol executed
among the set of parties P, with each party having a private binary input. We
say that ¦ is an ABA protocol tolerating At if the following hold, for every
possible behavior of At and every possible input:

– Termination: All honest parties eventually terminate the protocol.
– Correctness: All honest parties who have terminated the protocol hold iden-

tical outputs. Furthermore, if all honest parties had same input, say ½, then
all honest parties output ½.

The celebrated result of [FLP85] shows that any ABA protocol that never reaches
disagreement must have some nonterminating executions. For a protocol that
never reaches disagreement, the best we can hope for is that the set of nonter-
minating executions has probability zero. Such protocols are termed as almost-
surely terminating by [ADH08]. In this work, we construct ABA protocol that
is almost-surely terminating and has no error in correctness. The important
complexity measures of A-cast and ABA protocol are: Communication Com-
plexity: It is the total number of bits communicated by the honest parties in
the protocol; Expected Running Time: Refer to [CR93,Can95] for a detailed
definition of expected running time of a randomized asynchronous protocol.

While the basic definitions of A-cast and ABA consider message of single bit,
multi-valued protocols allow message to be long string of bits and exploit the fact
that the task is to be attained for the entire string and not bit by bit. This fact
generally allows a multi-valued protocol to be considerably more efficient than
many parallel executions of protocol for single bit.

Brief Literature. Error-free BC and BA protocol in synchronous network are
possible if and only if n ≥ 3t + 1 [PSL80,Lyn96]. The same bound holds for
A-cast and ABA both with and without error probability [Lyn96]. The seminal
result of [DR85] shows that any error-free BA or BC must communicate ­(n2)
bits (which again carry over for the case of A-cast and ABA). Since the message
must be at least single bit, the lower bound on the communication complexity
for single bit is ­(n2) bits. However, communication complexity of O(nℓ) bits
can be achieved for large enough value of ℓ (at least ℓ ≥ n bits) as shown in
[FH06]. Requiring large value for ℓ is practically motivated in many distributed
computing applications, like reaching agreement on a large file in fault-tolerant
distributed storage system, distributed voting where ballots containing gigabytes
of data is to be handled, MPC where many broadcasts and agreements are
invoked which can be combined into fewer executions of multi-valued protocols.

Following the approach of Turpin and Coan [TC84], all the subsequent multi-
valued protocols apply reduction-based approach [FH06,LV11,PR11,PR10], mean-
ing that they are constructed based on access to protocols for small message or
single bit message. The reductions presented in [FH06,LV11] for synchronous
settings and in [PR11,PR10] for asynchronous settings achieve optimal commu-
nication complexity of O(nℓ) bits. While the reduction presented in [FH06] in-
volves error probability, the reduction of [LV11] is error-free. In the asynchronous
settings, [PR11,PR10] reported multi-valued protocols with error probability.



Our Contribution. We achieve optimal complexity of O(nℓ) bits for error-
free A-cast and ABA with optimal fault-tolerance of t < n/3. We too follow
reduction-based approach of [TC84]. We now compare our reductions with that
of [PR10,PR11] and show that our reductions are better in all the following as-
pects: (a) error-free, (b) running time and (c) number of invocations to protocols
for single bit. All the protocols have optimal fault tolerance of t < n/3.

Ref. Type Running Time # Invocations to single bit protocol

[PR10], A-cast Probabilistic constant O(n2 logn) A-cast
[PR11], ABA Probabilistic O(n) O(n3) ABA

This paper, A-cast Error-free constant O(n2 logn) A-cast
This paper, ABA Error-free constant O(n) ABA

We now compare our results with the current best error-free A-cast and ABA
for single bit. The only error-free A-cast is due to [Bra84] that communicates
O(n2) bits and runs in constant time. Similarly, the only error-free ABA is due
to [ADH08] that runs in O(n2) time and requires communication of O(n8 log n)
bits and A-cast of same number of bits. Our protocols in this paper show clear
improvement over ℓ executions of these protocols for large enough ℓ.

Technically, our reductions are simple and are based on linear error correct-
ing code (e.g. Reed-Solomon Code) and a graph theoretic algorithm for finding
some special structure (called (n, t)-star; defined in Section 2) in undirected
graph [CR93,Can95]. While the existing reductions for multi-valued protocols
[PR11,LV11] are constructed in player-elimination [HMP00] or dispute control
[BTH06] framework, our reductions do not require them and therefore they are
more elegant. Finally, we note that the multi-valued A-cast protocol of [PR10]
also employs the algorithm for finding (n, t)-star [CR93,Can95]. However, we
mark an important and crucial observation about the outcome of the algorithm
in our context that allows to construct our protocol in an error-free manner.

Finally, we discuss our results in synchronous settings. By adapting our tech-
niques from asynchronous settings, we present new error-free reduction that is
constant-round and calls for O(n2) instances of protocols for single bit. We now
compare our result with the communication optimal reductions of [FH06,LV11].

Ref. Type Fault Round # Invocations
Tolerance Complexity to single bit protocol

[FH06] Probabilistic t < n/2 constant O(n(n+ ·))

[LV11] Error-free t < n/3 O(
√
ℓ+ n2) O(n2

√
ℓ+ n4)

This paper Error-free t < n/3 constant O(n2)

Road-map. In section 2 and 3, we present our construction for A-cast and
ABA respectively. We present our BA and BC protocols in Section 4 and then
conclude in Section 5.

2 Error-free Communication Optimal A-cast

Here we present our A-cast protocol. We start with brief presentation of the
tools that we use: (a) A-cast protocol of Bracha [Bra84]; (b) An algorithm for



finding a graphical structure called (n, t)-star in an undirected graph; (c) Linear
Error Correcting Code. We discuss them one by one.

Bracha’s A-cast. The first ever protocol for A-cast is due to Bracha [Bra84]
(a good description is available in [Can95]). The protocol is error-free, runs with
n ≥ 3t+1 in constant time and communicates O(n2) bits for a single bitmessage.

Notation 21 By saying that ‘Pi A-casts M ’, we mean that Pi as a sender, ini-
tiates Bracha’s A-cast protocol with M as the message. Similarly ‘Pj receives M
from the A-cast of Pi’ will mean that Pj terminates the A-cast protocol initiated
by Pi and outputs M . By the property of A-cast, if some honest party Pj ter-
minates the A-cast of some sender Pi with M as the output, then every other
honest party will eventually do so, irrespective of the behavior of the sender Pi.

Finding (n, t)-star in an Undirected Graph. We now describe an existing
solution for a graph theoretic problem, called finding (n, t)-star in an undirected
graph G = (V,E). Let G be an undirected graph with the n parties in P as its
vertex set. A pair (C,D) of sets with C ⊆ D ⊆ P is an (n, t)-star [Can95,BOCG93]
in G, if: (i) ∣C∣ ≥ n− 2t; (ii) ∣D∣ ≥ n− t; (iii) for every Pj ∈ C and every Pk ∈ D
the edge (Pj , Pk) exists in G.

Following the idea of [GJ79], [BOCG93] presented an elegant and efficient
algorithm for finding an (n, t)-star in a graph of n nodes, provided that the graph
contains a clique of size n−t. Actually, the algorithm, called as Find-STAR takes
the complementary graph G of G as input and tries to find (n, t)-star in G,
where (n, t)-star is a pair (C,D) of sets with C ⊆ D ⊆ P, satisfying the following
conditions: (a) ∣C∣ ≥ n − 2t; (b) ∣D∣ ≥ n − t; (c) There are no edges between
the nodes in C and nodes in C ∪ D in G. Clearly, a pair (C,D) representing an
(n, t)-star in G, is an (n, t)-star in G. Find-STAR outputs either an (n, t)-star, or a
message star-Not-Found. Whenever the input graph G contains an independent
set of size n − t, Find-STAR always outputs an (n, t)-star. For simple notation,
we denote G by H. The algorithm Find-STAR is presented below:

Algorithm Find-STAR(H)

1. Find a maximum matching M in H. Let N be the set of matched nodes (namely,
the endpoints of the edges in M), and let N = P ∖N .

2. Compute output as follows:
(a) Let T = {Pi ∈ N ∣∃Pj , Pk s.t (Pj , Pk) ∈ M and (Pi, Pj), (Pi, Pk) ∈ E}. T is

called the set of triangle-heads. Let C = N ∖ T .
(b) Let B be the set of matched nodes that have neighbors in C. So B = {Pj ∈

N ∣∃Pi ∈ C s. t. (Pi, Pj) ∈ E}. Let D = P ∖B.
(c) If ∣C∣ ≥ n − 2t and ∣D∣ ≥ n − t, output (C,D). Otherwise, output

star-Not-Found.

Linear Error Correcting Code. We use Reed-Solomon (RS) codes in our
protocols. We consider an (n, t+ 1) RS code in Galois Field F = GF (2c), where
n ≤ 2c. Each element of F is represented by c bits. An (n, t+1) RS code encodes



t+1 elements of F into a codeword consisting of n elements from F. We denote the
encoding function as ENC() and the corresponding decoding function as DEC().
Let m0,m1, . . . ,mt be the input to ENC, then ENC computes a codeword of
length n, (s1, . . . , sn), as follows: It constructs a polynomial of degree-t, f(x) =
m0+m1x+ . . .+mtx

t. It then computes si = f(i). We use the following syntax
for ENC: (s1, s2, . . . , sn) = ENC(m0,m1, . . . ,mt). Each element of the codeword
is computed as a linear combination of the t+ 1 input data elements, such that
every subset of (t+1) elements from the codeword uniquely determine the input
data elements. Similarly, knowledge of any t + 1 elements from the codeword
suffices to determine the remaining elements of the codeword.

The decoding function DEC can be applied as long as t+ 1 elements from a
codeword are available. A RS code is capable of error correction and detection.
The task of error correction is to find the error locations and error values in
a received vector. On the other hand, error detection means an indication that
errors have occurred, without attempting to correct them. We recall the following
well known result from coding theory. DEC can correct up to c Byzantine error
and simultaneously detect up to additional d Byzantine errors in a vector of
length N (where N ≤ n) if and only if N − t− 1 ≥ 2c+ d. In our protocols, we
may invoke DEC on a vector of length N ≤ n with specific value of c and d. If
c, d and N satisfy the above relation, then DEC returns back the correct data
elements corresponding to the vector; otherwise DEC returns ‘failure’.

2.1 Multi-valued A-cast Protocol

With the above tools, we are now ready to present our multi-valued A-cast
protocol, called Multi-Valued-Acast. We assume that the sender S has a message
m containing ℓ bits that he would like to communicate to all the parties in P
identically. Our protocol is structured into two phases, (a) S-dependent Phase
and (b) S-independent Phase. In the S-dependent phase, S proves that it has
communicated the same message to at least a set of 2t+1 parties, say CORE. The
S-dependent phase, as the name suggests, demands S to perform some special
roles. For an honest S, this phase will always be completed successfully. However,
a corrupted S may choose not to perform his actions and therefore this phase may
not be terminated for a corrupted S. The second phase, called S-independent
phase is initiated upon completion of the first phase. If S successfully proves the
existence of some CORE in the first phase, then the parties in CORE propagate
their common message to the remaining parties without any help from S.

In the first phase, S communicates his message m to every party over private
channel. Upon receiving a message from S, a party applies ENC on the message
to get a codeword and communicates elements of the codeword to different party.
Intuitively, the parties here check if they received the same message from S. They
A-cast [Bra84] their responses. Based on the response of the parties, a consistency
graph is constructed by the parties individually. S now finds a special structure
in the graph, namely a quadruple (C,D,ℱ , ℰ) such that (C,D) is an (n, t)-star ,
∣ℱ∣ ≥ 2t+1 and every party in ℱ has at least t+1 neighbors in C, ∣ℰ∣ ≥ 2t+1 and
every party in ℰ has at least 2t+1 neighbors in ℱ . Such a quadruple essentially



proves that there is a set of at least 2t+1 parties, CORE (same as ℰ), to whom
S indeed communicated same message. On finding such a quadruple, S A-casts
the same and all other parties can verify if indeed such quadruple exists in their
individual graph. In this process, all the (honest) parties agree on CORE and
proceed to second phase. The algorithm for finding (n, t)-star and an important
observation are combined intelligibly in order to find a quadruple in a graph.
The observation is that if S is honest then eventually, the set C of an (n, t)-
star will contain at least t+1 honest parties and when it happens, ℱ and ℰ can
be computed such that a valid quadruple can be formed. In the second phase, the
parties use error correction and detection of RS code to compute and agree on
the common message of the parties in CORE. We present the protocol in Figure
1 and Figure 2 and subsequently prove the properties.

Lemma 22 The honest parties in CORE hold same message of length ℓ. If S
is honest then the message is S’s message.

Proof. The set CORE is the ℰ component of a quadruple (C,D,ℱ , ℰ). We start
with proving that the honest parties in C hold the same message of length ℓ.
We recall that D contains at least t + 1 honest parties and every Pi ∈ C is
neighbor of every party in D. Let {Pi1 , . . . , Pi®} be the set of ® honest parties
in D, where ® ≥ t + 1. Then for every Pi in C, siik is same as sikik of all
k = [1, ®]. Therefore the codewords corresponding to the messages of the honest
parties in C are same at least at t + 1 locations corresponding to the identities
of the honest parties in D. Since the codewords belong to (n, t+1) RS code, the
messages of the honest parties in C are same. Let the common message be m,
∣m∣ = ℓ. Let (s1, . . . , sn) = ENC(m0,m1, . . . ,mt), where m = m0∣m1∣ . . . , ∣mt.
Now we show that every honest party Pi ∈ ℱ holds si. Recall that Pi has at
least t + 1 neighbors in C in which at least one is honest, say Pj . This implies
that sii of Pi is same as sji of Pj . However, sji = si, since Pj holds m. Hence
sii = si. Therefore every honest Pi in ℱ holds si which is same as sii. Finally,
we show that every honest Pi ∈ ℰ holds m. Recall that Pi has at least 2t + 1
neighbors in ℱ in which at least t+ 1 are honest. Let {Pi1 , . . . , Pi®} be the set
of ® honest parties in ℱ , where ® ≥ t + 1. Then siik of Pi is same as sikik of
every honest Pik for k = [1, ®]. Now sikik of Pik is same as sik . Therefore the
codeword corresponding to the message of Pi ∈ ℰ matches with (s1, . . . , sn) at
least at t + 1 locations corresponding to the identities of the honest parties in
ℱ . This implies the codeword of Pi is identical to (s1, . . . , sn), since they belong
to (n, t + 1) RS code. Hence Pi ∈ ℰ holds m. This completes the proof for the
first part of the lemma. The second part of the lemma is easy to prove. □

To prove the lemma below, we will show that when S is honest then eventually
an (n, t)-star can be found such that the set C will contain at least t+ 1 honest
parties. This observation is very crucial and is at the heart of our protocol.

Lemma 23 If S is honest, then all the parties terminate S-dependent Phase,
after agreeing on CORE.



Fig. 1. Error-free Communication Optimal A-cast.

Protocol Multi-Valued-Acast(S,m)
S-dependent Phase:

Code for S.
1. S sends his message m to every Pi.

Code for every Pi including S.
1. On receiving message mi, divide the ℓ bit message mi into t + 1 blocks,

mi0, . . . ,mit, each containing ℓ
t+1

(assume this to be an integer for simplicity)
bits. Compute (si1, . . . , sin) = ENC(mi0, . . . ,mit).

2. Send sii to every party. Send sij to Pj for j = [1, n].
3. On receiving sjj and sji from Pj , A-cast OK(Pi, Pj) if sjj = sij and sji = sii.
4. Construct a graph Gi with the parties in P as the vertices. Add an edge

(Pj , Pk) in Gi if OK(Pj , Pk) and OK(Pk, Pj) are received from the A-cast of Pj

and Pk respectively.
Code for S.

1. Upon every new receipt of some OK(∗, ∗), update GS . If a new edge is added
to GS , then execute Find-STAR(GS). Let there are ® ≥ 0 distinct (n, t)-stars
that are found in the past from different executions of Find-STAR(GS).
(a) Now if an (n, t)-star is found from the current execution of Find-STAR(GS)

that is distinct from all the ® (n, t)-star obtained before, do the following:
i. Call the new (n, t)-star as (C®+1,D®+1).
ii. Create a list ℱ®+1 as follows: Add Pj to ℱ®+1 if Pj has at least t+1

neighbors in C®+1 in GS .
iii. Create a list ℰ®+1 as follows: Add Pj to ℰ®+1 if Pj has at least 2t+1

neighbors in ℱ®+1 in GS .
iv. For every °, with ° = 1, . . . , ® update ℱ° and ℰ° :

A. Add Pj to ℱ° , if Pj ∕∈ ℱ° and Pj has at least t+1 neighbors in C°

in GS .
B. Add Pj to ℰ° , if Pj ∕∈ ℰ° and Pj has at least 2t + 1 neighbors in

ℱ° in GS .
(b) If no (n, t)-star is found or an (n, t)-star that has been already found in

the past is obtained, then update existing ℱ° ’s and ℰ° ’s.
(c) Now let (ℰ¯ ,ℱ¯) be the first pair such that ∣ℰ¯ ∣ ≥ 2t+1 and ∣ℱ¯ ∣ ≥ 2t+1

Assign CORE = ℰ¯ and A-cast (C¯ ,D¯ , ℰ¯ ,ℱ¯).
Code for Pi including S.

1. Assign CORE = ℰ¯ , when all the following events occur: (a) (C¯ ,D¯ , ℰ¯ ,ℱ¯)
is received from the A-cast of S; (b) (C¯ ,D¯) becomes a valid (n, t)-star in
Gi; (c) every party Pj ∈ ℱ¯ has at least t+ 1 neighbors in C¯ in Gi; and (d)
every party Pj ∈ ℰ¯ has at least 2t+ 1 neighbors in ℱ¯ in Gi.

Proof. If S is honest, then he sends same message m to all the parties. Therefore,
all honest parties generate same codeword, (s1, . . . , sn) = ENC(m0, . . . ,mt), such
that m = m0∣m1∣ . . . ∣mt. Therefore eventually there will be an edge between
every pair of honest parties. This implies that there will be a clique of size



Fig. 2. Error-free Communication Optimal A-cast.

S-independent Phase:

Code for Pi including S.
1. If CORE is constructed and Pi ∈ CORE, then assign si = sii.
2. If CORE is constructed and Pi ∕∈ CORE, then assign si to be the value sji

that is received from at least t+ 1 Pj ’s in CORE.
3. Send si to all the parties.
4. On receiving 2t + 1 + r, r ≥ 0, sj ’s apply DEC with c = r and d = t − r, if

DEC returns ‘failure’, then wait for more values. If DEC returns data elements
m0, . . . ,mt, then output m = m0∣m1∣ . . . ∣mt, where ∣ denotes concatenation.

at least 2t + 1 eventually. This guarantees that S will eventually find at least
one (n, t)-star in GS . Now we show that S will eventually find a quadruple
(C,D,ℱ , ℰ) such that (C,D) is an (n, t)-star and every party in ℱ has at least
t + 1 neighbors in C and every party in ℰ has at least 2t + 1 neighbors in
ℱ . To prove this we start with proving that an honest S will eventually find
an (n, t)-star such that the set C will contain at least t + 1 honest parties.
For an honest S, eventually the edges between each pair of honest parties will
vanish from the complementary graph GS . So the edges in GS will be either
(a) between an honest and a corrupted party OR (b) between two corrupted
parties. Let ¯ be the first index, such that (n, t)-star (C¯ ,D¯) is generated in
GS , when GS contains edges of above two types only. Now, by construction of C¯

(see Algorithm Find-STAR), it excludes the parties in N (set of parties that are
endpoints of the edges of maximum matching M) and T (set of parties that are
triangle-heads). An honest Pi belonging to N implies that (Pi, Pj) ∈ M for some
Pj and hence Pj is corrupted (as the current GS does not have edge between
two honest parties). Similarly, an honest party Pi belonging to T implies that
there is some (Pj , Pk) ∈ M such that (Pi, Pj) and (Pj , Pk) are edges in GS . This
clearly implies that both Pj and Pk are surely corrupted. So for every honest Pi

not in C¯ , at least one (if Pi belongs to N , then one; if Pi belongs to T , then
two) corrupted party also remains outside C¯ . As there are at most t corrupted
parties, C¯ may exclude at most t honest parties. Still C¯ is bound to contain at
least t+ 1 honest parties.

Now all honest parties will be neighbors of the t+ 1 honest parties in C¯ in
GS . Therefore ℱ¯ will eventually contain all the honest parties. Finally since
all honest parties are neighbors of each other, ℰ¯ will contain all honest parties
eventually and therefore it is guaranteed to contain at least 2t+1 parties. Hence
we proved that S can find a quadruple (C,D,ℱ , ℰ) with the required properties.
S now A-casts the quadruple.

We now argue that every honest party will find (C,D,ℱ , ℰ) in their graphs
and agree on the same. Though the graphs are constructed and maintained by
parties individually in their local memory, it is always guaranteed that if an edge



appears in the graph of an honest party, then the edge will eventually appear
in the graphs of the other honest parties. This is ensured since the graphs are
updated based on the responses of the parties that are A-casted. It now follows
that if some honest party agree on CORE, then eventually all honest parties will
also agree on the same. So we proved that all the honest parties will terminate
S-dependent Phase, after agreeing on CORE = ℰ . □

Lemma 24 If the honest parties initiate S-independent Phase, then they
terminate the phase with the common message of the parties in CORE as output.

Proof. An honest party initiates S-independent Phase, if he agrees on CORE.
By Lemma 22, all the honest parties in CORE hold common message, say m
of length ℓ and therefore same codeword (s1, . . . , sn) = ENC(m0,m1, . . . ,mt),
where m = m0∣m1∣ . . . , ∣mt. Then every honest Pi in CORE already holds si,
the ith element in the codeword. Every party Pi not in CORE would receive si
from the t+1 honest parties of CORE. Therefore every honest Pi will eventually
hold the ith component of the codeword. Now every Pi send his si to every other
party. Now on receiving at least 2t+ 1+ r, 0 ≤ r ≤ t sj ’s, party Pi applies DEC
with c = r and d = t−r. Note that c+d = t, where t is the maximum number of
corruption. Therefore if there are more than r wrong values (sent by Byzantine
corrupted parties), DEC will return ‘failure’. However for at least one value of
r, 0 ≤ r ≤ t, there will be at most r errors in the received vector and then
the message can be reconstructed back successfully. This technique has been
previously used in [CR93,Can95]. They call it as Online Error Correction. □

Theorem 21 Multi-Valued-Acast is an A-cast protocol satisfying Definition 11.

Proof. We first consider the case of an honest S. By Lemma 23, for an honest
S all the parties terminate S-dependent Phase, after agreeing on CORE. By
Lemma 22, the honest parties in CORE hold the message of S, i.e.m. By Lemma
24, all honest parties will terminate with the common message m.

For a corrupted S, all we need to show is that if some honest party terminates
with message m★, then every other honest party do the same. Let Pi be the first
honest party to terminate the protocol with m★ as output. Then Pi must have
agreed on CORE and the parties in CORE holds m★. Then every other honest
party will agree on the same CORE and eventually terminate with m★ as the
output (by Lemma 24). □

Theorem 22 Multi-Valued-Acast communicates O(nℓ) bits and invokes O(n2 log n)
A-cast protocol for single bit.

Proof. S communicates his message m, ∣m∣ = ℓ to all the parties. This requires
nℓ bits of communication. Every party Pi sends two values sii and sij to every
other party Pj . The values are ℓ

t+1 bits long each. Therefore in total there are
ℓ

t+1O(n2) = O(nℓ) bits of communication.
S A-casts (C,D,ℱ , ℰ). Each set in the quadruple can be represented by an n

length bit vector. Therefore 4n invocations to A-cast protocol for single bit are



required. Finally every party may A-cast OK signal for every other party. Each
OK signal includes identities of two parties that can be represented by 2 log n
bits. Therefore O(n2 log n) invocations to A-cast for single bit are required. □

We note that for an (n, t + 1) RS code, the field F = GF (2c) in which
the code is defined should satisfy n ≤ 2c or log n ≤ c . In our case c = ℓ

t+1

(recall that m is divided into t + 1 parts each containing ℓ
t+1 bits). Therefore

ℓ
t+1 ≥ log n → ℓ ≥ (t+ 1) log n.

3 Error-free Communication Optimal ABA

In this section, we present our ABA protocol. We use our multi-valued A-cast
protocolMulti-Valued-Acast from the previous section as one of the sub-protocols.
Similar to Multi-Valued-Acast that uses A-cast protocol for single bit, our new
ABA uses existing error-free ABA for single bit as another sub-protocol. In fact
we use a very well-known asynchronous primitive called Agreement on Common
Subset (ACS) introduced by [BKR94] that uses ABA for single bit as black
box. We recall that the only error-free ABA is due to [ADH08]. We will use the
following notation for invoking Multi-Valued-Acast.

Notation 31 By saying that ‘Pi Multi-casts M ’, we mean that Pi as a sender,
initiates Multi-Valued-Acast protocol with M as the message. Similarly ‘Pj re-
ceives M from the Multi-cast of Pi’ will mean that Pj terminates the execution
of Multi-Valued-Acast protocol initiated by Pi and outputs M . By the property of
Multi-Valued-Acast, if some honest party Pj terminates the Multi-Valued-Acast
protocol of some sender Pi with M as the output, then every other honest party
will eventually do so, irrespective of the behavior of the sender Pi.

Agreement on a Common Subset (ACS). Consider the following scenario.
The parties in P are asked to A-cast (or Multi-cast) some value. While the honest
parties in P will eventually execute the A-cast (Multi-cast), the corrupted parties
may or may not do the same. So the (honest) parties in P want to agree on a
common set T ⊂ P, with ∣T ∣ = 2t + 1, such that A-cast (Multi-cast) of each
party in T will be eventually terminated by the (honest) parties in P. For this,
the parties use ACS primitive presented in [BKR94]. The ACS protocol uses n
instances of ABA for single bit.

3.1 Multi-valued ABA Protocol

Given the above sub-protocols, our ABA is very simple. Every party Pi on
having a message mi of length ℓ, computes an n length codeword (si1, . . . , sin) =
ENC(mi0, . . . ,mit) where mi0∣ . . . ∣mit. Pi Multi-casts sii. Using ACS, the parties
then agree on some subset of 2t + 1 parties, say X whose Multi-casts will be
terminated eventually. Every party then verifies if the values Multi-casted by
the parties in X match with their corresponding elements of the codeword and



then A-cast their response. The parties again agree on some subset of 2t + 1
parties using ACS, say Y. Based on the responses of the parties in Y and the
values Multi-casted by the parties in X , the agreement is reached. Note that
we use Multi-cast for the elements of the codewords (i.e. sii’s) and A-cast for
the responses. The reason is that sii’s are message dependent and therefore can
be arbitrarily large. Therefore by appropriately setting the value of ℓ, we can
implement Multi-casting of sii values in O(nℓ) overall complexity. However, we
will see from the protocol given below, the response vector will be always n length
bit vector. Therefore, using Multi-cast for this case will worsen the complexity,
as compared to the case when A-cast of Bracha is used for the same purpose. The
protocol is now presented in Figure 3 and its properties are proved subsequently.

Fig. 3. Error-free Communication Optimal ABA.

Protocol Multi-Valued-ABA()

Code for Pi.
1. On having message mi, divide the ℓ bit message mi into t + 1 blocks,

mi0, . . . ,mit, each containing ℓ
t+1

(assume this to be an integer) bits. Compute
(si1, . . . , sin) = ENC(mi0, . . . ,mit). Multi-cast sii.

2. Participate in an instance of ACS to agree on X containing 2t+1 parties whose
Multi-casts will be eventually terminated by all honest parties.

3. Construct a binary vector Vi of length n. Assign Vi[j] = 1, if Pj ∈ X and
sij = sjj where sjj is received from the Multi-cast of Pj . Otherwise assign
Vi[j] = 0. A-cast Vi.

4. Participate in an instance of ACS to agree on Y containing 2t+1 parties whose
A-casts will be terminated eventually by all honest parties.

5. Check if there are at least t + 1 parties in Y, whose vectors are identical
and have at least t + 1 1’s. Let {i1, . . . , ii+1} ⊆ X be the t + 1 minimum
indices where they all have 1’s. If there is no such set of t + 1 parties in Y,
then {i1, . . . , ii+1} be the t + 1 minimum indices in X . Then apply DEC on
si1,i1 , . . . , sit+1it+1 and let m0,m1, . . . ,mt be the data returned by DEC. Then
output m = m0∣ . . . ∣mt.

Theorem 31 Protocol Multi-Valued-ABA is an ABA protocol.

Proof. The termination is guaranteed due to the termination properties of Multi-
Valued-Acast, A-cast protocol of Bracha [Bra84] and ACS (the termination of
ACS is guaranteed due to the termination of the underlying ABA for single bit).
Since Multi-Valued-Acast initiated by the honest parties will eventually termi-
nate, the set X will be agreed among the parties by the termination of ACS.
Similarly, since A-cast (of Bracha) initiated by the honest parties will eventually
terminate, the set Y will be agreed among the parties by the termination of ACS.
Once X and Y are agreed, the rest is local computation. Therefore termination
of Multi-Valued-ABA is guaranteed.

We now argue about the correctness of Multi-Valued-ABA. First we show
that all the honest parties will agree on the same message. This follows from



the fact that all the honest parties agree on {i1, . . . , it+1} ⊆ X in the last step
of the protocol. Furthermore, by the correctness property of Multi-Valued-Acast,
all the honest parties also agree on the values Multi-casted by the parties in
{Pi1 , . . . , Pit+1}. Our claim now follows trivially. We now consider the case when
all the honest parties start with same input message m of length ℓ and argue
that all honest parties will agree on m eventually. If all the honest parties start
with m, then they generate (s1, . . . , sn) = ENC(m0, . . . ,mt) locally, where m =
m0∣ . . . ∣mt. Every honest party Pi then Multi-casts si. By the property of Multi-
Valued-Acast, all the parties will receive the same value Multi-casted by the
parties in X . Therefore the honest parties in Y will have identical Vi vectors.
Furthermore the Vi vectors will have 1’s at least at t+1 locations corresponding to
the parties in X who Multi-casted correct value from the codeword (s1, . . . , sn).
So {i1, . . . , it+1} ⊆ X in the last step of the above protocol will be t+1 identities
of the parties in X (having t+1 minimum indices) who Multi-casted correct value
from codeword (s1, . . . , sn). So DEC when applied on the values Multi-casted by
{Pi1 , . . . , Pit+1} will return m0,m1, . . . ,mt where m = m0∣ . . . ∣mt. □

Theorem 32 Multi-Valued-ABA communicates O(nℓ) bits, invokes O(n3 log n)
instances of A-cast for single bit and invokes 2n instances of ABA for single bit.

Proof. Every party Multi-casts ℓ
t+1 bits. This requires communication of O(nℓ)

bits and O(n3 log n) invocations to A-cast for single bit. Then every party A-
casts an n length bit vector. Therefore n2 invocations to A-cast is required.
Finally two invocations to ACS calls for 2n instances of ABA for single bit. □

To make the underlying protocol Multi-Valued-Acast work correctly, we require
ℓ

t+1 ≥ (t+1) log n. Recall that when the input message size forMulti-Valued-Acast
is ℓ, then we require that ℓ ≥ (t+1) log n. In our ABA protocol, the input toMulti-
valued-Acast is ℓ

t+1 . Therefore we have ℓ
t+1 ≥ (t+ 1) log n → ℓ ≥ (t+ 1)2 log n.

4 Error-free Communication Optimal BA and BC

Here we present our new multi-valued BA and BC protocol. We first present a BA
protocol. A BC protocol with same complexity of the BA protocol can be achieve
by letting the sender send the message to all the parties and then running a BA
to reach agreement. This is the standard reduction in synchronous settings from
BA to BC [Lyn96]. Our BA protocol follows the idea of Multi-Valued-Acast. We
use the BC protocol of [BGP09,CW92] for single bit that communicates O(n2)
bits. We now present the protocol in Figure 4.

Lemma 41 The honest parties in CORE hold same message of length ℓ.

The proof of Lemma 41 completely follows from the proof of Lemma 22.

Lemma 42 If all honest parties start with same input m, then all the parties
will agree on CORE, ∣CORE∣ ≥ 2t+ 1.



Fig. 4. Error-free Multi-valued BA with Optimal Communication Complexity.

Protocol Multi-Valued-BA()

Code for Pi.
1. On having message mi, divide the ℓ bit message mi into t + 1

blocks, mi0, . . . ,mit, each containing ℓ
t+1

bits. Compute (si1, . . . , sin) =
ENC(mi0, . . . ,mit). Send sii to every party. Send sij to Pj for j = [1, n].

2. Construct a binary vector Vi of length n. Assign Vi[j] = 1, if sij = sjj and
sii = sji where sjj and sji are received from Pj . Otherwise assign Vi[j] = 0.

3. Broadcast Vi using BC protocol for single bit.
4. Construct graph Gi using parties in P as the vertices. Add edge (Pj , Pk)

if Vj [k] = 1 and Vk[j] = 1. Execute Find-STAR(Gi). If star-Not-Found is
returned, then set bi = 0. Else let (Ci,Di) be the (n, t)-star returned by Find-
STAR. Let ℱi be the set of parties who have at least t + 1 neighbors in Ci in
graph Gi. Let ℰi be the set of parties who have at least 2t+1 neighbors in ℱi

in graph Gi. If ∣ℱi∣ ≥ 2t+ 1 and ∣ℰi∣ ≥ 2t+ 1, then set bi = 1, else set bi = 0.
5. Broadcast only bi when bi = 0; else broadcast bi and (Ci,Di,ℱi, ℰi) using BC

protocol for single bit.
6. If t+1 bj ’s are zero, then agree on some predefined message m★ of length ℓ. Else

let ® be the minimum index of the party where b® = 1 and (C®,D®,ℱ®, ℰ®)
be such that (C®,D®) is an (n, t)-star in Gi, every party in ℱ® has at least
t + 1 neighbors in C® and every party in ℰ® has at least 2t + 1 neighbors in
ℱ®. Assign CORE = ℰ®.

7. Assign si to be the value sji received from the majority of the parties in
CORE. Send si to every party.

8. Let (s1, . . . , sn) be the vector where sj is received from Pj . Apply DEC on
(s1, . . . , sn) with c = t and d = 0. Let m0,m1, . . . ,mt be the data returned by
DEC. Output m = m0∣ . . . ∣mt.

Proof. The proof here follows from the proof of Lemma 23. Briefly, when all
honest parties start with same input, every pair of honest parties will have edge
between them. In other words, the edges in the complementary graph will be ei-
ther (a) between an honest and a corrupted party OR (b) between two corrupted
parties. Therefore following the argument given in Lemma 23, C component of
an (n, t)-star will contain at least t+ 1 honest parties, which subsequently will
lead to the construction of ℱ and ℰ with size at least 2t + 1. Although it is
not guaranteed that all honest parties find same quadruple (C,D,ℱ , ℰ), but it
is ensured that they will find some quadruple. So the honest parties never agree
on predefined m★ in this case. Now since all the parties broadcast their quadru-
ple, it is easy to reach agreement on a valid quadruple which the parties do by
selecting the one broadcasted by the party with minimum index. Therefore all
the parties will agree on CORE. □

Lemma 43 If CORE is agreed, all honest parties output the common message
of the parties in CORE.



Proof. By Lemma 41, all honest parties in CORE hold same message, say m.
The proof now follows from the proof of Lemma 24. □

Theorem 41 Multi-Valued-BA is a BA protocol.

Proof. If CORE is agreed, then all honest parties will output the common mes-
sage of the parties in CORE (by Lemma 43). If CORE is not agreed, then there
must be at least t+1 parties who broadcasted bi = 0. Since bi’s are broadcasted,
all honest parties will agree on predefined m★ of length. So agreement is always
achieved at the end. Now if all the honest parties start with same m, then they
will agree on CORE (by Lemma 42) and output m (by Lemma 43). □

Theorem 42 Multi-valued-BA communicates O(nℓ) bits and invokes O(n2) broad-
cast protocol for single bit.

Proof. Every party Pi sends two values sii and sij to every other party Pj . The
values are ℓ

t+1 bits long each. Therefore in total there are ℓ
t+1O(n2) = O(nℓ) bits

of communication. Every party Pi broadcasts n-length binary vector Vi, a bit bi
and quadruple (Ci,Di,ℱi, ℰi). Each set in the quadruple can be represented by
n-length bit vector. Therefore every party invokes 5n+1 instances of broadcast
for single bit. This leads to total O(n2) instances of broadcast for single bit. □

The value of ℓ should be at least (t+ 1) log n to make the underlying (n, t + 1)
RS code work (following the same logic as explained for Multi-Valued-Acast).

5 Open Problems

An important open question is to investigate whether multi-valued communi-
cation optimal protocols can be achieved with less number of invocations to
protocols for single bit in comparison to what we provide in this paper.

References

[ADH08] I. Abraham, D. Dolev, and J. Y. Halpern. An almost-surely terminating
polynomial protocol for asynchronous Byzantine Agreement with optimal
resilience. In PODC, pages 405–414. ACM Press, 2008.

[BGP09] P. Berman, G. A. Garay, and K. J. Perry. Bit optimal distributed consensus.
In Computer Science Research, 2009.

[BKR94] M. BenOr, B. Kelmer, and T. Rabin. Asynchronous secure computations
with optimal resilience. In PODC, pages 183–192. ACM Press, 1994.

[BO83] M. Ben-Or. Another advantage of free choice: Completely asynchronous
agreement protocols. In PODC, pages 27–30. ACM Press, 1983.

[BOCG93] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous Secure Compu-
tation. In STOC, pages 52–61. ACM Press, 1993.

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In STOC, pages 1–10. ACM Press, 1988.



[Bra84] G. Bracha. An asynchronous ⌊(n − 1)/3⌋-resilient consensus protocol. In
PODC, pages 154 – 162. ACM Press, 1984.

[BTH06] Z. Beerliová-Trub́ıniová and M. Hirt. Efficient multi-party computation
with dispute control. In TCC, LNCS 3876, pages 305–328, 2006.

[Can95] R. Canetti. Studies in Secure Multiparty Computation and Applications.
PhD thesis, Weizmann Institute, Israel, 1995.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret shar-
ing and achieving simultaneity in the presence of faults (extended abstract).
In STOC, pages 383–395. ACM Press, 1985.

[CR93] R. Canetti and T. Rabin. Fast asynchronous Byzantine Agreement with
optimal resilience. In STOC, pages 42–51. ACM Press, 1993.

[CW92] B. A. Coan and J. L. Welch. Modular construction of a Byzantine Agree-
ment protocol with optimal message bit complexity. Information and Com-
putation, 97(1):61–85, 1992.

[DR85] D. Dolev and R. Reischuk. Bounds on information exchange for Byzantine
Agreement. JACM, 32(1):191–204, 1985.

[FH06] M. Fitzi and M. Hirt. Optimally Efficient Multi-valued Byzantine Agree-
ment. In PODC, pages 163–168, 2006.

[FLP85] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed
consensus with one faulty process. JACM, 32(2):374–382, 1985.

[FM88] P. Feldman and S. Micali. An Optimal Algorithm for Synchronous Byzan-
tine Agreemet. In STOC, pages 639–648. ACM Press, 1988.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[HMP00] M. Hirt, U. Maurer, and B. Przydatek. Efficient Secure Multiparty Com-
putation. In ASIACRYPT, LNCS 1976, pages 143–161, 2000.

[LV11] G. Liang and N. H. Vaidya. Error-Free Multi-Valued Consensus with
Byzantine Failures. In PODC, pages 11–20. ACM Press, 2011.

[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[PR10] A. Patra and C. Pandu Rangan. Communication Optimal Multi-valued

Asynchronous Broadcast Protocol. In LATINCRYPT, LNCS 6212, pages
162–177, 2010.

[PR11] A. Patra and C. Pandu Rangan. Communication Optimal Multi-valued
Asynchronous Byzantine Agreement with Optimal Resilience. In ICITS,
LNCS 6673, pages 206–226, 2011.

[PSL80] M. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. JACM, 27(2):228–234, 1980.

[PW92] B. Pfitzmann and M. Waidner. Unconditional Byzantine Agreement for
any number of faulty processors. In STACS, LNCS 577, pages 339–350,
1992.

[Rab83] M. O. Rabin. Randomized Byzantine generals. In FOCS, pages 403–409.
IEEE Computer Society, 1983.

[RBO89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In STOC, pages 73–85. ACM
Press, 1989.

[TC84] R. Turpin and B. A. Coan. Extending binary Byzantine Agreement to
multivalued Byzantine Agreement. IPL, 18(2):73–76, 1984.


