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1 Introduction

Authentication theory is concerned with providing evidence to the receiver of a message that
it was sent by a speci�ed legitimate sender, even in the presence of an opponent who can
intercept messages sent by the legitimate sender and/or send a fraudulent message to the
receiver. Authenticity (like con�dentiality) can be achieved by cryptographic coding based
on a secret key shared by sender and receiver.

This paper is concerned with information-theoretically secure message authentication,
i.e., we consider a scenario in which the opponent has unlimited computing power and knows
everything about the system, except for the secret key. We consider bounds on how e�ciently
a secret key shared by sender and receiver can be used or, more precisely, we derive lower
bounds on an opponent's cheating probability that no authentication system with a given
key size can overcome.

Compared to the theory of secrecy, authentication theory is more subtle and involved.
For instance, while Shannon's de�nition of perfect secrecy [11], which means that ciphertext
and plaintext are statistically independent, is obviously the strongest possible de�nition of
secrecy, it is not clear how perfect authenticity should be de�ned. Shannon [11] proved the
well-known result that for any perfect cipher the secret key must be at least as long as the
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plaintext or, more precisely, that H(Z) � H(X) where X and Z denote the message and the
secret key, respectively.

After some purely combinatorial lower bound results in authentication theory had been de-
rived [4], [3], Simmons [12] initiated a sequence of research activities on information-theoretic
lower bounds in authentication theory [2], [5], [6], [7], [9], [10], [13], [14], [15], [17].

The problem of deciding whether a received message is authentic or not is a hypothesis
testing problem. The receiver must decide which of two hypotheses is true: either the message
was generated by the legitimate sender knowing the secret key, or by an opponent without
a priori knowledge of the secret key. The joint probability distribution of the authenticated
message and the secret key is di�erent in both cases, and this allows the receiver to distinguish
between the two hypotheses. This natural interpretation as a hypothesis testing problem is
the key to both a generalized and simpli�ed treatment of lower bound results in authentication
theory. It is our hope that this paper provides the right view of a problem whose previous
treatment has been quite complicated.

2 Description of the scenario

Consider a scenario in which a sender and a receiver share a secret key Z. The sender wants
to send a sequence of plaintext messages X1;X2; : : : ;Xn, at some independent time instances,
in an authenticated manner to the receiver. Each message Xi is authenticated separately by
sending an encoded message Yi which depends (possibly probabilistically) on Z, Xi, and pos-
sibly also on the previous plaintext messagesX1; : : : ; Xi�1 and encoded messages Y1; : : : ; Yi�1.
Based on Yi and Z, and possibly also on X1; : : : ;Xi�1 and Y1; : : : ; Yi�1, the receiver decides
to either reject the message or accept it as authentic and, in case of acceptance, decodes Yi
to a message X̂i. It is assumed that the receiver is synchronized, i.e., he knows the message
number i. We assume that Xi is uniquely determined by X1; : : : ; Xi�1, Y1; : : : ; Yi and Z and
hence, by induction, also by Y1; : : : ; Yi and Z alone. This is equivalent to

H(XijY1 : : : YiZ) = 0:

Information-theoretic concepts, in particular entropy measures, are reviewed in the Appendix.
An authentication code can either provide no secrecy, i.e.

H(XijY1 : : : Yi) = 0

(or more typically even H(XijYi) = 0), or it can provide some degree of secrecy when

H(XijY1 : : : Yi) > 0:

Authentication schemes without secrecy are often called Cartesian. Our results apply to both
cases.

As usual it is assumed that an opponent knows everything about the system, including
the codes used and the plaintext statistics, but that he has no a priori information about the
secret key. In order to remove a possible source of confusion it should be pointed out that
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in the literature plaintext message and encoded message are also referred to as source state
and message, denoted by S and M , respectively. We follow Massey's terminology [7].

An opponent with read and write access to the communication channel can use either
of two di�erent strategies for cheating. In a so-called impersonation attack at time i, the
opponent waits until he has seen the encoded messages Y1; : : : ; Yi�1 (which he lets pass
unchanged to the receiver) and then sends a fraudulent message ~Yi which he hopes to be
accepted by the receiver as the ith message. In a so-called substitution attack at time i, the
opponent lets pass messages Y1; : : : ; Yi�1, intercepts Yi, and replaces it by a di�erent message
~Yi which he hopes to be accepted by the receiver. In a substitution attack, an opponent
can of course only be considered successful when ~Yi is decoded by the receiver to a plaintext
message X̂i di�erent from Xi sent by the sender.

In order to de�ne what it means for an opponent to be successful in an impersonation or
a substitution attack, we can distinguish three cases: The opponent is considered successful
when

(a) the receiver accepts ~Yi as a valid message1.

(b) the receiver accepts ~Yi as a valid message and decodes it to a message X̂i known to the
opponent. In other words, an opponent is only considered successful if he also guesses
the receiver's decoded message X̂i correctly.

(c) The receiver accepts ~Yi as a valid message and decodes it to a particular message X̂i = x

chosen by the opponent. This type of attack depends on a particular value x.

Note that cases (b) and (c) di�er from (a) only when the plaintext message is not contained
in (or uniquely determined by) the encoded message, i.e., when the system also provides some
degree of con�dentiality. In this extended abstract we will only consider the �rst case, but
our results can be generalized to the more general cases (b) and (c).

For a given authentication scheme we will denote the probabilities of success for an optimal
attack by PI;i for an impersonation attack at time i and by PS;i for a substitution attack at
time i. When considering the same probabilities for a particular observed sequence

Y1 = y1; : : : ; Yi�1 = yi�1

of encoded messages and, in case of a substitution attack also for a �xed intercepted message
Yi = yi, then we denote the corresponding probabilities by

PI;i(y1; : : : ; yi�1)

for an impersonation attack at time i and by

PS;i(y1; : : : ; yi)

1In the literature only this case has been considered.
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for a substitution attack at time i. Note that, for instance, PI;i is the expected value of
PI;i(y1; : : : ; yi�1), i.e.

PI;i =
X

(y1;:::;yi�1)

PY1;:::;Yi�1(y1; : : : ; yi�1) � PI;i(y1; : : : ; yi�1):

and
PS;i =

X

(y1;:::;yi)

PY1;:::;Yi(y1; : : : ; yi) � PS;i(y1; : : : ; yi):

3 Review of previous results

The signi�cance of a lower bound result in authentication theory depends on the generality
of the model considered. Instead of reviewing the various papers on the subject in detail,
we brie
y summarize the various restrictions of the existing results and the generalizations
achieved in this paper. We refer to [7], [9] and [17] for reviews of the literature on the subject.

� Some papers consider the authentication of only a single message [4], [5], [7], [10], [12],
[16]. Most of the papers dealing with the authentication of several plaintext messages
X1;X2; : : : consider only schemes that apply the same encoding rule to every plaintext
message Xi, thus assuming that all plaintext messages are di�erent and belong to the
same message space [3], [9], [17]. This assumption is necessary to prevent replay attacks
in this model, but it appears to be quite unnatural. The only previous papers considering
time-dependent encoding rules are [13], [14], and [15].

� Some papers are restricted to deterministic encoding rules referred to as authentication
codes without splitting [3], [4], [5], [12], [14], [17].

� Some papers are restricted to authentication without secrecy, i.e. where the encoded
message uniquely determines the plaintext message [3], [12], [16], [14], [17]. Such schemes
are sometimes referred to as Cartesian.

� In all previous papers it is assumed that the receiver never errs when seeing a valid
message, i.e., that his strategy is to accept a message if and only if it is consistent with
the key Z. Our results are more general in that we also provide bounds on an opponent's
cheating probability for a given tolerable probability of rejecting a valid message. While
this generalization does not appear to be of much practical interest, it is useful because
it establishes the link to the standard hypothesis testing scenario.

Our results hold in a general model without any of the discussed restrictions. Moreover,
we need not assume that X1;X2; : : : are independent and we can allow the encoding rule
for message Xi to depend on the previous plaintext messages X1; : : : ;Xi�1. Furthermore, as
discussed above, the realistic alternative models in which an opponent is considered successful
only when he knows (or can choose) the plaintext message to which the receiver decodes the
fraudulent message, have not been considered previously.
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4 Hypothesis testing

Hypothesis testing is the task of deciding which of two hypotheses, H0 or H1, is true, when
one is given the value of a random variable U (e.g., the outcome of a measurement). The
behavior of U is described by two probability distributions: If H0 or H1 is true, then U is
distributed according to the distribution PU jH0

or PU jH1
, respectively. For ease of notation

we will write PU jH0
= PU or PU jH1

= QU . A decision rule assigns one of the two hypotheses
to each possible u that U can assume. There are two types of possible errors in making a
decision. Accepting hypothesis H1 when H0 is actually true is called a type I error, and
the probability of this event is denoted by �. Accepting hypothesis H0 when H1 is actually
true is called a type II error, and the probability of this event is denoted by �. The optimal
decision rule is given by the famous Neyman-Pearson theorem which states that, for a given
maximal tolerable probability � of type II error, � can be minimized by assuming hypothesis
H0 if and only if

log
PU (u)

QU (u)
� T (1)

for some threshold T , where here and in the sequel logarithms are to the base 2. (Note that
only the existence of T , but not its value is speci�ed by this theorem.) The term on the left of
(1) is called the log-likelihood ratio. We refer to [1] for an excellent treatment of hypothesis
testing.

Let PU and QU be arbitrary probability distributions over the same �nite or countably
in�nite set U . The expected value of the log-likelihood ratio with respect to PU is called the
discrimination and is de�ned by

L(PU ;QU ) =
X

u2U

PU (u) log
PU (u)

QU (u)
:

The discrimination is non-negative and is equal to zero if and only if the two distributions
are identical.

A well-known result in hypothesis testing (cf. [1], Theorem 4.4.12) provides a relation
between the error probabilities � and � and the discrimination L(PU ;QU ). Let the function
d(�; �) be de�ned by

d(�; �)
4
= � log

�

1� �
+ (1� �) log

1� �

�

= �h(�)� � log(1� �)� (1� �) log �:

where h(�)
4
= �� log �� (1� �) log(1� �) is the binary entropy function.

Lemma 1. The type I and type II error probabilitites � and � satisfy

d(�; �) � L(PU ;QU ):

2Note that in our formulation of this result we have exchanged � and � as well as PU and QU .
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In particular, for � = 0 we have � log � � L(PU ;QU ) which is equivalent to

� � 2�L(PU ;QU):

Consider the special case of hypothesis testing where U = [S; T ] consists of a pair of
random variables S and T , where PU = PST is the actual joint distribution of this pair
and where QU = PSPT is the product of the two marginal distributions. This case will
be important in the analysis of impersonation attacks. Note that PST and PSPT are both
probability distributions over the same set S � T when S and T take on values in S and T ,
respectively. We have

L(PST ;PSPT ) =
X

s;t

PST (s; t) log
PST (s; t)

PS(s)PT (t)

= H(S) +H(T )�H(ST )

= I(S;T ) (2)

where the entropy H(S) of a random variable S and the other information theoretic quan-
tities are de�ned in the Appendix. We also refer to [1] for an excellent introduction to
information theory. The second and third step of (2) follow from these de�nitions. We have
L(PST ;PSPT ) = 0 if and only if the two distributions PST and PSPT are identical, i.e., if and
only if S and T are statistically independent. This fact is needed for deriving the conditions
for equality in the lower bounds, which is omitted in this extended abstract.

Consider now a hypothesis testing scenario in which the distributions PU and QU depend
on the value of an additional random variable V known to the testing person, i.e., we consider
a collection of pairs (PU jV=v; QU jV=v) of distributions, each pair ocurring with probability
PV (v). The hypothesis testing strategy may depend on the value v of V , and for each v we
can de�ne �(v) and �(v) as the error probabilities of type I and II, respectively, given that
V = v. An elternative form of Lemma 1 is

d(�(v); �(v)) � L(PU jV=v;QU jV=v): (3)

The following lemma provides a lower bound similar to Lemma 1 where � and � are taken
as the average (over values of V ) error probabilities.

Lemma 2. The average error probabilities of type I and II,

� =
X

v

PV (v)�(v) and � =
X

v

PV (v)�(v);

respectively, satisfy

d(�; �) �
X

v

PV (v)L(PU jV =v;QU jV=v):

Proof (sketch): The function d(�; �) is a convex-[ function in both its arguments and hence
one can apply Jensen's inequality (cf. [1]). 2
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Lemma 2 holds of course also for distributions conditioned on the event that a further
random variable W takes on a particular value w known to the testing person, i.e., for pairs
(PU jV=v;W=w; QU jV=v;W=w) of distributions. The two error probabilities �(v; w) and �(v; w)
also depend on w. The following corollary follows directly from Lemma 2.

Corollary 3. The average error probabilities of type I and II, over choices of V ,

�(w) =
X

v

PV (v)�(v; w) and �(w) =
X

v

PV (v)�(v; w);

respectively, satisfy

d(�(w); �(w)) �
X

v

PV (v)L(PU jV =v;W=w;QU jV=v;W=w):

In analogy to above, consider the special cases of hypothesis testing where U = [S; T ]
consists of a pair of random variables S and T whose distribution depends on a random
variable V , and consider the collection of pairs of distributions

(PU jV=v; QU jV=v) = (PST jV=v; PSjV=vPT jV=v);

each pair ocurring with probability PV (v). Then the expression on the left side of the in-
equality in Lemma 2 becomes

X

v

PV (v)L(PU jV =v;QU jV=v) =
X

v

PV (v)L(PST jV =v; PSjV=vPT jV=v)

=
X

v

PV (v)I(S;T jV = v)

= I(S;T jV ): (4)

Similarly, when (PU jV=v; QU jV=v) = (PST jV=v;W=w; PSjV=v;W=wPT jV=v;W=w), each pair ocur-
ring with probability PVW (v; w), Then the expression on the left side of the inequality in
Corollary 3 becomes

X

v

PV (v)L(PU jV =v;W=w;QU jV=v;W=w) = I(S;T jV;W = w): (5)

5 Impersonation attacks

Let us now return to the analysis of message authentication. The problem of deciding whether
a received message ~Y is authentic or not can be viewed as a hypothesis testing problem. H0

corresponds to the hypothesis that the message is authentic, and H1 corresponds to the
hypothesis that the message has been generated by an opponent. Referring to Section 4,
we are interested in proving lower bounds on �, for a given tolerated upper bound on �.
Such a result is stated in the form d(�; �) � B for some bound B which for � = 0 implies
� log � � B:

d(�; �) � B =) � � 2�B : (6)
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Consider an impersonation attack on the ith message Xi. The receiver knows Z and the
messages Y1 = y1; : : : ; Yi�1 = yi�1, and sees a message Y i, which could either be a correct
message Y i = Yi sent by the legitimate receiver (hypothesis H0) or a fraudulent message
Y i = ~Yi inserted by an opponent (hypothesis H1). A potential opponent would choose ~Yi
depending on the observed messages Y1 = y1; : : : ; Yi�1 = yi�1, but without further knowledge
about the secret key. In its most general form, an opponents strategy for impersonation at
time i can hence be described by an arbitrary probability distribution Q ~YijY1=y1;:::;Yi�1=yi�1

,
where we have used the symbol Q instead of P to distinguish this distribution from the actual
distribution P ~YijY1=y1;:::;Yi�1=yi�1

induced by a legitimate sender. Note that in a deterministic

(non-splitting) strategy, Q ~YijY1=y1;:::;Yi�1=yi�1
is equal to 1 for one particular value yi and zero

otherwise.

Consider probability distributions conditioned on the event Y1 = y1; : : : ; Yi�1 = yi�1.
Under hypothesis H0, the pair [Y i; Z] (seen by the receiver) is generated according to the
probability distribution PYiZjY1=y1;:::;Yi�1=yi�1 , whereas under hypothesis H1, [Y 1; Z] is gen-
erated according to the distribution Q ~YijY1=y1;:::;Yi�1=yi�1

� PZjY1=y1;:::;Yi�1=yi�1 .

An information-theoretic lower bound is obtained by observing that one admissible (but
generally not optimal) strategy is to let

Q ~YijY1=y1;:::;Yi�1=yi�1
= P ~YijY1=y1;:::;Yi�1=yi�1

:

Observe that the distribution P ~YijY1=y1;:::;Yi�1=yi�1
is known to the opponent. Recall the

de�nitions of PI;i and PI;i(y1; : : : ; yi�1) from Section 2. The following theorem generalizes
results of several papers, including those by Walker [17], Rosenbaum [9], and Smeets [14].

Theorem 4. For every authentication scheme,

d(�; PI;i(y1; : : : ; yi�1)) � I(Yi;ZjY1 = y1; : : : ; Yi�1 = yi�1)

and, for � = 0,
PI;i(y1; : : : ; yi�1) � 2�I(Yi;ZjY1=y1;:::;Yi�1=yi�1):

Furthermore,

d(�; PI;i) � I(Yi;ZjY1 : : : Yi�1)

and, for � = 0,
PI;i � 2�I(Yi;ZjY1:::Yi�1):

Proof. The �rst inequality follows from (3) for v = [y1; : : : ; yi�1], U = [Yi; Z], PU =
PYiZjY1=y1;:::;Yi�1=yi�1 and QU = PYijY1=y1;:::;Yi�1=yi�1 � PZjY1=y1;:::;Yi�1=yi�1 . The third in-
equality follows from Lemma 2, and the second and fourth inequalities follow from (6). 2

Consider now scenario (b) mentioned in Section 2, i.e., in addition to having ~Yi accepted
by the receiver the opponent also wants to know the message X̂i the receiver decodes it to.
One admissible (but generally not optimal) strategy is to choose the pair [ ~Xi; ~Yi] according
to some distribution Q ~Xi

~YijY1=y1;:::;Yi�1=yi�1
. Using similar arguments as those used above
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one can prove the following bound on the average probability P 0
I;i of cheating in an optimal

attack:
P 0
I;i � 2�I(XiYi;ZjY1;:::;Yi�1):

Consider now scenario (c) mentioned in Section 2, i.e., in addition to having ~Yi accepted
by the receiver, the opponent also wants the decoded message X̂i to be equal to a particular
value x. One can prove the following bound on the average probability P 00

I;i;x of cheating in
an optimal attack

P 00
I;i;x � 2�I(XiYi;ZjY1;:::;Yi�1;Xi=x):

6 Substitution attacks

When an opponent guesses the secret key Z correctly, he can launch any attack of his choice,
for instance any of the three forms of substitution attacks. In this section we therefore derive
lower bounds on an opponent's probability of guessing the correct value of Z.

Let S be a random variable. The entropy H(S) is the expected value of � logPS(S).
Because the minimum of the values occurring in the averaging, mins(� log PS(s)), is upper
bounded by the average, it is straight-forward to prove that

min
s
(� log PS(s)) = � log(max

s
PS(s)) � H(S)

and hence that the probability of guessing S correctly when knowing only PS is lower bounded
by

max
s

PS(s) � 2�H(S):

Similarly, and by application of Jensen's inequality, one obtains

X

t

PT (t)max
s

PSjT (s; t) � 2�H(SjT )

as a lower bound on the average (over choices of T ) probability of guessing S correctly when
knowing PSjT and T . These observations lead to the following theorem which generalizes
results in the literature.

Theorem 5. We have

PS;i(y1; : : : ; yi) � 2�H(ZjY1=y1;:::;Yi=yi) (7)

and

PS;i � 2�H(ZjY1;:::;Yi): (8)

These bounds also hold for the other two types (b) and (c) of substitution attacks.

The jounal version of this paper will describe an alternative derivation of a more general
version of these results by using the results on hypothesis testing.
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7 Conclusions

The results of this paper can be combined as described in the following. When a sequence of
n messages X1; : : : ;Xn is to be authenticated, an opponent could choose the type of attack
with the highest success probability. A secret key Z is used optimally when the maximum of
these probabilities is minimal. If it is required that a legitimate message is always accepted
(� = 0) in all of these possible attacks, we obtain

�
nX

i=1

logPI;i � log PS;n �
nX

i=1

I(Yi;ZjY1 : : : Yi�1) +H(ZjY1 : : : Yn)

= H(Z):

The following theorem follows from the fact that �log(:) is a convex-[ function. It
generalizes results of Walker [17] and Rosenbaum [9] and states that for a secret key of
a given size, the e�ective security achievable in any authentication scheme for n messages
corresponds at most to the di�culty of guessing a secret key whose size is n+1 times smaller
than the size of the actual secret key. In other words, a part of the secret key is consumed
by each message to be authenticated, and the number of key bits consumed by a message
corresponds to the negative logarithm of the desirable maximal probability of cheating.

Theorem 6. For every authentication scheme for authenticating n messages X1; : : : ;Xn in

which the legitimate receiver never rejects a valid message, we have

max(PI;1; ; : : : ; PI;n; PS;n) �
H(Z)

n+ 1
:

Appendix

This appendix gives a brief summary of important information-theoretic concepts. All
logarithms are to the base 2. The entropy H(S) of a random variable S is de�ned by

H(S) = �
X

s2S:PS(s) 6=0

PS(s) log PS(s);

the conditional entropy of S, given that the random variable T takes on the value t is de�ned
by

H(SjT = t) = �
X

s2S:PSjT=t(s) 6=0

PSjT=t(s) log PSjT=t(s);

and the conditional entropy of S, given T is de�ned by

H(SjT ) =
X

t2T

PT (t)H(SjT = t)

= �
X

(s;t)2S�T :PST (s;t) 6=0

PST (s; t) log PSjT (s; t):
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One can further de�ne

H(SjT; V = v) =
X

t2T

PT jV (t; v)H(SjT = t; V = v)

The mutual information between S and T is de�ned by

I(S;T ) = H(S)�H(SjT )

which is equal to H(T ) � H(T jS). The conditional mutual information between S and T ,
given an event V = v, or given the random variable V , are de�ned by

I(S;T jV = v) = H(SjV = v)�H(SjT; V = v)

and
I(S;T jV ) = H(SjV )�H(SjTV ) =

X

v

PV (v)I(S;T jV = v);

respectively. A further quantity of interest is

I(S;T jV;W = w) = H(SjV;W = w)�H(SjTV;W = w)

=
X

v

PV jW (v; w)I(S;T jV = v;W = w):
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