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Abstract. This paper reviews the relations between information theory and
cryptography, from Shannon’s foundation of information theory to the most
recent developments in unconditionally-secure key-agreement protocols. For a
long time, information theory has mainly been used in cryptography to prove
lower bounds on the size of the secret key required to achieve a certain level
of security in secrecy and authentication systems. More recent results on a
slightly extended model suggest that perfect secrecy is practically possible
with only a short secret key, thus apparently contradicting Shannon’s lower
bound on the key size of a perfect cipher.

1. Introduction

From a scientific point of view, one of the most interesting and challenging problems
in cryptography is the design of systems or protocols whose security can be proven
rigorously. There exist many approaches to provable security in the literature, but
most of these are not truly satisfactory, as will be explained below.

In order to prove the security of a cryptographic system, a definition of security
or, alternatively, of breaking the system must be given. Furthermore, the assumptions
about the adversary’s available information and about his computing power must be
stated. Whether a system with provable security is satisfactory from a theoretical
and practical viewpoint depends in a crucial manner on three aspects: (1) on the
acceptability and generality of the definition of security; (2) on how realistic the two
assumptions are; and (3) on the practicality of the system. All previous approaches to
provable security fail in at least one of these aspects, and we believe that the approach
for generating cryptographic keys discussed in Section 4.2 comes closest to a realistic
provably secure system.



For instance, it is trivial to “prove” the security of a cipher if we define security
(irrelevantly) to mean that an adversary is unable to square a circle with straightedge
and compass ([14], p. 216). It is similarly trivial to prove that an adversary cannot
obtain any information about the plaintext for a system in which the legitimate re-
ceiver cannot either, or if one assumes that the adversary is unable to even receive the
ciphertext.

In order to avoid all possible arguments about the assumptions about the adversary’s
available information, one normally assumes in cryptography that an adversary has
complete information about the design of the system (this is known as Kerkhoff’s
assumption) and that he can receive all messages transmitted over insecure channels.

There are two possible types of assumptions about the adversary’s computing power:
A system is called computationally-secure if it is secure against an adversary with
reasonably bounded computational resources and it is called information-theoretically
secure if it is secure even against adversaries with infinite computing power. There
are two problems with the first type of assumption. First, one needs to specify a
model of computation and, for instance in view of analog implementations of neural
networks or, more severely, of the potential realizability of quantum computers [16],
it is not clear whether a Turing machine or any standard discrete computer model is
sufficiently general. In other words, one could argue that even the assumption that
an adversary has the computing power corresponding to 102° of the newest-generation
CRAY computers is not satisfactory. The second problem is that complexity theory,
which is (among other things) concerned with proving lower bounds on the difficulty
of computational problems, is unable to provide any reasonable lower bound proofs
for any reasonable problem and model of computation, let alone for the problem of
breaking a cryptographic system.

The second type of assumption, namely that an adversary has infinite computing
power, implies no restriction whatsoever and therefore anticipates all arguments about
models of computation and realistic estimates of an opponent’s computing power. How-
ever, if one considers the theoretical possibility of testing all possible keys of a system
at once, it appears impossible to prove a system secure under such an assumption. Here
is where information theory comes into play. Shannon defined a cipher system to be
perfect if the ciphertext provides no information about the plaintext or, equivalently, if
plaintext and ciphertext are statistically independent. In other words, when a perfect
cipher is used to encipher a message, an adversary can do no better than guess the
message without even looking at the ciphertext. Shannon gave as a simple example of
a perfect cipher the so-called one-time pad previously proposed by Vernam [32] with-
out proof of security: the binary plaintext is concealed by adding modulo 2 (EXOR)
a random binary secret key of the same length. Of course, this system is completely
impractical for most applications where only a short secret key is available. Unfortu-
nately, Shannon proved the pessimistic result that perfect secrecy can be achieved only
when the secret key is at least as long as the plaintext message (cf. Section 3.1).

This pessimistic result led most researchers to believe that perfect secrecy is bound



to be impractical. Therefore, information theory has until recently been believed to
provide only pessimistic results in cryptography, that is lower bounds on the necessary
key size in order to achieve a certain level of unconditional security. It was only recently
demonstrated that information theory can also provide optimistic results, showing that
perfect secrecy can indeed be achieved in a realistic scenario (cf. Section 4).

In summary, the role of information theory in cryptography can be characterized
as that of deriving results on the provable security of a system, even in presence of
adversaries with infinite computing power. In view of the fact that no proof of the
computational security of a cipher (which is not also information-theoretically-secure)
is in sight at the horizon of current research, it appears to be important to investigate
the applicability of information theory in cryptography. Note that many systems have
been claimed to be computationally-secure in the literature, but all these proofs rely on
an unproven intractability assumption. Although many of these proofs are important
results from a theoretical point of view, one could nevertheless argue that in most cases
the (intractability) assumption is very close to the theorem to be proven.

This paper is organized as follows. Section 2 summarizes the basic concepts of
information theory. In Section 3 we review the most important lower-bound results
on the size of secret keys for perfect secrecy, unconditionally-secure authentication and
secret sharing. Our treatment of authentication is novel and considerably simpler than
previous approaches. Section 4 presents some recent optimistic results on secret-key
agreement leading to potentially practical systems with perfect secrecy.

2. Information-theoretic preliminaries

A discrete random variable X taking on values from a finite or countably infi-
nite set X is characterized completely by its probability distribution Px, a function
X — R assigning to every possible value z € X the probability Px(x) that X takes
on the value z, and satisfying > cr Px(z) = 1. A random vector [Xi,...,X,]| con-
sisting of several random variables can be considered as a single random variable tak-
ing on values in the Cartesian product of the individual sets. The random variables
Xi,...,X, are statistically independent if the probability distribution factors, i.e., if
Px, x,(z1,...,2,) = Px,(21) - -- Px, (x,) for all z,..., z,.

The entropy (or uncertainty) of a random variable X is defined by
A

H(X) - Z Px(z)log, Px(z)

zE€X:Px (z)#£0
and for a finite set satisfies
0 < H(X) < ]og2|X|

(where |S| denotes the cardinality of a finite set S) with equality on the left if and only
if Px(x) = 1 for some z € X and with equality on the right if and only if Px(z) = 1/|X|



for all z € X, i.e., if and only if X takes on all possible values equally likely. H(X)
measures the uncertainty of an observer (of the random experiment generating X)
about the outcome of X and is a real number that depends only on the set of non-zero
values of Px(.)

The entropy of a binary random variable taking on the two values with probabilities
pand 1 —pis
A
h(p) = —plogyp— (1 —p)logy(1 —p)
with the convention that h(0) = h(1) = 0. h(p) is a strictly convex-N function that

takes on its maximum for p = 1/2 where h(1/2) = 1. The joint entropy H(Xj, ..., X,)
of the random variables X7, ..., X,, is defined by the obvious generalization of (), i.e.,

H(Xla cee aXn) = Z le,...,xn(iﬂl, cee ,37n) log, le,...,xn (331, <oy $n)

where here and in the sequel the summation is understood to be only over those values
with nonzero probability. (Alternatively, define 0log, 0 2 limg_,0 £ log, € = 0.)

The conditional entropy of a random variable X when given the random variable Y
is defined as

A
H(X|Y) = = Pxy(z,y)log Pxjy(z,y),
(z,y)

where Pxy(z,y) is the conditional probability that X takes on the value x given that
Y =y. H(X|Y) can equivalently be defined as the expected value (over choices of
y) of H(X|Y = y), the entropy of the conditional probability distribution Pxy(z,y)
considered as a function of x only. One can show that

0 < H(X[Y) < H(X)

with equality on the left if and only if Y uniquely determines X and with equality on
the right if and only if X and Y are statistically independent. An important rule for
transforming uncertainties is the so-called chain rule:

which for conditional entropies has the form

The mutual information I(X;Y') between two random variables X and Y is defined
as
I(X:Y) & HX)- HX|Y)= HY) - HY|X) = I(V; X)

and measures the amount by which the uncertainty about X is reduced by giving Y
(and vice versa). Similarly, the mutual conditional information between X and Y,
given 7, is defined as

I(X;Y|Z) & H(X|Z)- HX|YZ)
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and is also symmetric, i.e., I(X;Y|Z) = I(Y;X|Z), as is easily seen by expanding
H(XY|Z) in two different ways.

The interested reader is referred to [4] for a detailed introduction to information
theory.

3. Pessimistic results: lower bounds on key size

Information theory has been used in cryptography primarily to derive pessimistic
results, i.e., lower bounds on the size of the secret key necessary to achieve a certain
level of security. In this section we review the three most important areas for which
such bounds have been derived: secrecy, authentication and secret sharing.

Consider the model of a symmetric cryptosystem shown in Figure 1. This is a
generalization of Shannon’s model: it contains a secret randomizer S known only to
the sender of a message X as well as a public randomizer R assumed to be available
to everybody, including the eavesdropper.

Public Randomizer R

Eavesdropper
Plai X Y Y X M
aintext R / R y _| Vlessage
Source Encryptet Decrypter Destin,
S| Z Z
secure channel
LE‘
Random Key
Source Source

Figure 1: Model of a symmetric cipher with two types of randomizers.

There are two dual and complementary security goals in communication: Confi-
dentiality (or secrecy) and authenticity. Confidentiality means that an eavesdropper



cannot obtain any useful information about the plaintext, and authenticity means that
an active eavesdropper cannot successfully insert a fraudulent message Y that will be
accepted by the receiver.

3.1. Secrecy

A cipher as shown in Figure 1 is defined to be perfect [29] if and only if the plaintext
X and the ciphertext Y together with the public randomizer are statistically indepen-
dent, i.e., if and only if I(X;YR) = 0. The following theorem is a generalization of
Shannon’s theorem [29].

Theorem 1. A cipher can be perfect only if

H(Z) > H(X).

Proof. Every cipher must be uniquely decipherable. Therefore
H(X|YZR) = 0.
The definition of perfect secrecy, I(X;Y R) = 0, can be stated as
H(X|YR) = H(X).

Using the basic expansion rule for uncertainties, and the fact that the removal of given
knowledge can only increase uncertainty, we obtain

H(X) = H(X|YR)

AN
=
<
N
~
=3

H
= H
< H

Note that the condition of Theorem 1 does not guarantee a cipher to be perfect.

It will be demonstrated in Section 4 that virtually-perfect secrecy is possible even
when H(Z) < H(X), provided that the model of Figure 1 is modified slightly. For
instance, if the public randomizer is very large then it is infeasible (although theoret-
ically possible) for an eavesdropper to read the entire string R, and therefore he or
she is left with incomplete information, contradicting the Shannon assumption implied
by the model. Alternatively, one could assume that accessing the randomizer is not
free of errors: for instance R could be broadcast by a satellite with a very low signal
power where sender, receiver and eavesdropper can receive the bits only with certain
nonzero bit error probabilities. Surprisingly, perfect secrecy can be achieved in such a
realistic scenario even without a secret key Z and even when the eavesdropper receives



the random bits of R by orders of magnitude more reliably than the legitimate sender
and receiver [21].

3.2. Authentication

Consider an active eavesdropper who wants to insert a fraudulent ciphertext Y,
hoping that it will be accepted by the receiver. There are essentially two different types
of attack that the eavesdropper can use. Impersonation after seeing ¢ — 1 ciphertext
messages Y7, ..., Y;_; (and letting them pass by) means that the eavesdropper chooses
a new message Y; which she wishes to be accepted by the receiver as the ith message
Y;. Let P;(i) denote the probability of success for this type of attack. Substitution
after seeing 7 ciphertext messages Yi,...,Y; (and letting Y;,...,Y;_; pass by) means
that the eavesdropper tries to substitute Y; with a different message }N/z #Y;. Let Ps(7)
denote the probability of success for this type of attack.

Many lower bounds on the probability of successful attacks have been derived in
the literature (see [30, 18, 34, 31, 27] and the extensive list of references cited therein).
The various papers differ somewhat in the model that is adopted: for instance some
papers assume that all messages sent by the sender must be different while others point
out that this restriction is unnecessary. Furthermore, some papers assume that a fixed
encoding rule is used whereas other papers stress a model in which the encoding rule
can change with time, depending on a global secret key. Most unsatisfactorily, most
papers on authentication are quite lengthy and complicated, and many of them prove
essentially the same results.

The purpose of this section is to point out that the right way of looking at authen-
tication is in the framework of classical hypothesis testing (e.g., see [4]). This allows to
derive most if not all previously-known lower bounds in a unified and strongly simplified
way.

Hypothesis testing is the task of deciding which of two hypotheses, Hy or Hi, is
true, when one is given the value of a random variable U (e.g., the outcome of a
measurement). The behavior of U is described by two probability distributions: If
Hy or Hy is true, then U is distributed according to the distribution Py or Py,
respectively. For ease of notation we will write Py = Py and Pyj; = Qu. A decision
rule assigns one of the two hypotheses to each possible u that U can assume. There
are two types of errors possible in making a decision. Accepting hypothesis H; when
Hy actually is true is called a type I error, and the probability of this event is denoted
by a. Accepting hypothesis Hy when H; actually is true is called a type II error, and
the probability of this event is denoted by 3. The optimal decision rule is given by
the famous Neyman-Pearson theorem which states that, for a given maximal tolerable
probability 3 of type II error, o can be minimized by assuming hypothesis Hj if and
only if
Py (u)

Qu(u)

log >T (1)



for some threshold 7. (All logarithms in this paper are to the base 2). Note that only
the existence of T', but not its value is specified by this theorem. The term on the left
of (1) is called the log-likelihood ratio. We refer to [4] for an excellent treatment of
hypothesis testing.

Let Py and @y be arbitrary probability distributions over the same finite or count-
ably infinite set U/ of values. The expected value of the log-likelihood ratio with respect
to Py is called the discrimination and is defined by

L(Py; Qu) 2 ZMPU(U) log SZ((Z))

The discrimination is non-negative and is equal to zero if and only if the two distribu-
tions are identical.

A well-known result in hypothesis testing (cf. [4], Theorem 4.4.1) provides a relation
between the error probabilities & and § and the discrimination L(Py; Qy):

1 —
L(Py;Qu) > flog 2+ (1~ )log - ©)
-« Q@
In particular, for 8 = 0 we have
L(Py; Qu) > —loga (3)
or, equivalently,
a > 9—L(Py;Qu) (4)

Let X and Y be random variables with joint distribution Pxy and marginal dis-
tributions Px and Py, respectively. It follows immediately from the definition of the
mutual information between X and Y,

I(X;Y)=H(X)- HX|Y)=H(X)+ HY) - HXY),

that
L(PXY; PXPY) = I(X§ Y)- (5)

Note that Pxy and Px Py are both probability distributions over the set X x )) when
X and Y take on values in X' and ), respectively. We have L(Pxy; PxPy) = 0 if and
only if the two distributions are identical, which is equivalent to saying that X and Y
are statistically independent.

Let us now return to the analysis of message authentication. The problem of deciding
whether a received message Y is authentic or not can be viewed as a hypothesis testing
problem. Hj corresponds to the hypotheses that the message is authentic, and H;
corresponds to the hypotheses that the message has been generated by a fraudulent
opponent.

We first consider an impersonation attack for the first message in which the receiver
is given Y and the key Z. Under hypothesis Hy, the pair [Y, Z] is generated according
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to Py, whereas under hypothesis Hy, [Y, Z] is generated according to the distribution
Q5 Pz for some distribution Q3 because the opponents must choose Y independent
of the secret key Z. (Note that in a deterministic strategy, Q3 is equal to 1 for one
particular value and zero otherwise.) One particular strategy for an opponent is to
choose Q3 = Py,. In this case it follows from (2) and (5) that

1—
1fa+(1—ﬁ)log aﬁ'

I1(Y1; K) = L(Py,z; Py, Pz) > Blog

If the receiver is required to always accept legitimate messages, i.e. if § = 0, then we
have
Pi(1) > 271002 (6)

which is Simmons’ bound [30].

We now consider a substitution attack for the first message in which an opponent,
who is given a first valid message Y, tries to substitute it with a different message
Y # Y. The following bound due to Simmons [30] can also be derived using certain
hypothesis testing arguments:

Ps(1) > 2 HEZM), (7)

Combining (6) and (7) one obtains
P;(1)- Ps(1) > H(K).

Again using hypothesis testing arguments (see [22]) and Jensen’s inequality one obtains
the following results on multiple authentication which was first derived by Walker [34].

Theorem 2. The probabilities of impersonation and substitution in authentication for
multiple messages using the single key Z satisfy the following inequalities for all n:

P](?’L) Z Q_I(Yn;Z|Y1,...,Yn_1)’

Pg(n) > 27 H(@Y1,Yn)

and .
Ps(n) [] Pr(i) > 27 7@,
=1

3.3. Secret sharing

Information theory has only recently been applied to derive lower bounds on the
size of shares in perfect secret sharing schemes [8]. A perfect secret sharing scheme
allows for a secret S to be distributed among n participants in such a way that only



qualified subsets of participants can recover the secret while any non-qualified subset
has no information about S.

Given a set P of participants, an access structure A on P is a family of subsets of P:
A C 27. It only makes sense to consider monotone access structures, i.e., we assume
that 7' € A and T" C T’ together imply that 7" € A. For a given access structure
we actually consider its monotone closure. We denote the share given to participant
P € P also by P, hoping that this will not cause any confusion. Similarly we denote
the set of shares given to a set T" C P also by 7. The conditions for a perfect secret
sharing scheme can be stated as follows:

TeA = H(SIT)=0

and
T¢A = H(S|T)=H(S).

Consider now the set P = {A, B, C, D} of four participants and the access structure
consisting of the monotone closure of A = {AB, BC,CD}, which is {AB, BC,CD,
ABC,ABD,ACD,BCD,ABCD} Hence we have

H(S|AB) = H(S|BC) = H(S|CD) =0,

but
H(S|AC) = H(S|AD)= H(S|BD) = H(S).

Using these facts one can derive the lower bound H(BC) > 3H(S) [8] which implies
that at least one of the shares of B and (' must be at least 1.5 times the length of
S, either H(B) > 1.5H(S) or H(C) > 1.5H(S) or both. Instead of repeating the
argument of [8] we demonstrate a general proof technique.

Consider the set P’ = P U S and the set of all subsets of P’ (which form a partially
ordered set). We can define a labeled directed graph associated with P’ naturally
as follows: the vertices are the subsets of P’ (including the empty set {}) and two
vertices T and T" are connected by a directed edge T — T" if and only if 7" # T and
T =T'UP for some P € P'. Each edge TU P — T can be thought of being labeled
with H(T U P|T) = H(P|T). For a given access structure A, such a labeling implies
that an edge TUS — T is labeled H(S) if and only if 7' ¢ A and labeled 0 if and only
if T e A.

A proof for a lower bound on the size of the shares in a secret sharing scheme
usually can be stated in the form of a lower bound on H(T) for some T" C P. Such
a lower bound can be derived by considering an appropriate path from 7 to {} in
the described graph, where all entropies assigned to the edges of the path are to be
added or subtracted when the edge is traversed in the labeled direction or in the reverse
direction, respectively. The art of deriving such a proof is that of finding a path which
traverses as many H(S)-labeled edges as possible in positive direction and as many
0-labeled edges as possible in the negative direction.
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Consider the example discussed above. Edges labeled H(S) are AS — A, BS — B,
cS - C, DS - D, ADS — AD, ACS — AC and BDS — BD, and the edges
labeled 0 are ABS — AB, BCS — BC, CDS — CD, ABCS — ABC, ABDS —
ABD, ACDS — ACD, BCDS — BCD and ABCDS — ABCD. Consider now the
path

BC — BCS — ABCS — ACS — AC — ACD — ACDS — ADS — AD — A —{}
which can be interpreted as

H(BC) = —H(S|BC)— H(A|BCS)+ H(B|ACS) + H(S|AC) — H(D|AC)
—H(S|ACD) + H(C|ADS) + H(S|AD) + H(D|A) + H(A).  (8)

A closed loop in the graph corresponds to a total value of 0. Therefore the loop
B —- AB — ABS — BS — B corresponds to the equation

— H(A|B) — H(S|AB)+ H(A|BS)+ H(S|B) =0 (9)
Adding the left side of (9) to the right side of (8), and using

H(S|BC)=H(S|AB) = H(S|ACD =0,
H(S|AC)= H(S|AD)=H(S|B) = H(S),
H(A) - H(AIB) > 0,
H(D|A) - H(D|AC) = 0,
H(A|BS) — H(A|BCS) > 0,
H(B|ACS) >0,
and H(C|ADS) >0
we obtain the desired result H(BC) > 3H(S).

This proof technique can be automated and implemented as a graph-theoretic al-
gorithm. It has recently been applied to find the first access structure for which in
each secret sharing scheme at least one share is at least twice as long as the secret [6].
Subsequently, Csirmaz [10] improved these results considerably.

4. Optimistic results on perfect secrecy

In this section we focus our attention on the fun part of information theory in
cryptography by demonstrating that perfect secrecy defined by Shannon can indeed
be achieved in a realistic scenario. An intuitive generalization of Theorem 1 is that in
any model in which the adversary can observe the entire communication between two
communicating parties, perfect secrecy can only be achieved if the entropy of the secret
key is at least equal to the total entropy of the exchanged messages. However, the proof
of this intuitive result is not completely trivial [20]. Because of this lower-bound result,
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perfect secrecy can only be achieved in a model in which an adversary cannot obtain
precisely the same information as both legitimate parties. In the following, we will
refer to the legitimate parties as Alice and Bob and to the adversary as Eve.

4.1. Wire-tap and broadcast channels

The first such model was the wire-tap channel proposed by Wyner in 1975 [35].
Wyner considered an eavesdropper Eve tapping a telephone over an imperfect wire-
tapping channel. Assume for instance that Eve can see all bits transmitted from Alice
to Bob, but only with bit error probability €. In this case, Alice could encode each
information bit to be sent by generating and sending N — 1 random bits and sending
as the N-th bit of a block the XOR of the N — 1 random bits and the information
bit. Bob could easily recover the information bit because he receives Alices messages
without errors, but Eve’s bit error probability when guessing the information bit can
easily be shown to be (1 — (1 —2¢)")/2 which approaches 1/2 exponentially fast in V.

Wyner’s model and results were generalized by Csiszar and Korner [11] who consid-
ered a discrete memoryless broadcast channel for which the wire-tapper Eve’s received
message is not necessarily a degraded version of the legitimate receiver’s message. The
common input to the main channel and Eve’s channel is the random variable X cho-
sen by Alice according to some probability distribution Py, and the random variables
received by the legitimate receiver Bob and by the adversary Eve are Y and Z, respec-
tively. X,Y and Z take on values in some finite or countably infinite alphabets X', )
and Z, respectively. The channel behavior is completely specified by the conditional
probability distribution Pyzx. Note that in Wyner’s original setting [35], X,Y and Z
form a Markov chain, i.e., Pz xy = Pzy, which implies I(X; Z|Y) = 0.

The secrecy capacity Cs(Py Z| x) of the described broadcast channel with transition
probability distribution Py zx was defined in [11] as the maximum rate at which Alice
can reliably send information to Bob such that the rate at which Eve obtains this
information is arbitrarily small. In other words, the secrecy capacity is the maximal
number of bits per use of the channel that Alice can send to Bob in secrecy. Csiszar
and Korner [11] proved that

Co(Pyzix) 2 max{H(X|2) = H(X|Y)] (10)

where the inequality is satisfied with equality except in very exceptional cases that are
not of interest. If equality holds, the secrecy capacity is zero unless I(X;Y) > I(X; Z)
for some Px.

In order to demonstrate that feedback from Bob to Alice over an insecure public
channel can increase the secrecy capacity of a broadcast channel, we consider a broad-
cast channel for which the main channel and Eve’s channel are independent binary
symmetric channels with bit error probabilities € and ¢, respectively, i.e., X, Y and
7 are binary random variables and Pyz x = Py|x - Pzx where Py x(y|z) = 1 — € if
v =y, Prix(ylz) = eif v # y, Pyx(z|lr) =1 -6 if v = 2, and Py x(z|r) = § if
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x # z. Without loss of generality we may assume that ¢ < 1/2 and § < 1/2. For ease
of notation, we will refer to the described probability distribution Py, x as D(e,d). It
follows from (10) (see [20]) that

Co(D(e,8)) = {{;(‘”"’(6) e

It follows that secret messages can be sent only if 6 > e. However, if public feedback
is allowed, secret messages can be exchanged even when ¢ < e. To this end, Bob can
conceptually convert the channel scenario into one in which he is the sender and Alice
and Eve are the receivers [20]. To achieve this, Alice sends a random bit over the
noisy broadcast channel to Bob (and Eve) and Bob XORs the bit he wishes to send
to Alice with the received bit and sends the result over the public channel. Of course,
Alice can XOR this bit with the random bit she sent and thus “receive” Bob’s bit with
error probability e. However, one can prove that Eve “sees” Bob’s bit as if it had been
sent through a cascade of the two noisy channels and hence her bit error probability is
€+ — 2¢d. Thus the secrecy capacity with feedback is h(e + 6 — 2ed) — h(e) which is
positive unless € = 1/2 or § = 0.

The described broadcast channel scenario is a special case of a much more general
secret-key agreement scenario to be described in the following section.

4.2. Unconditionally-secure secret-key agreement

Unconditionally-secure secret-key agreement [3], [20] takes place in a scenario where
Alice and Bob are connected by an insecure channel to which a passive eavesdropper
Eve has perfect access, and where Alice, Bob and Eve know the correlated random
variables X, Y and Z, respectively, which are distributed according to some joint prob-
ability distribution Pxy z.

Alice and Bob share no secret key initially (other than possibly a short key required
for guaranteeing authenticity and integrity of messages sent over the public channel),
but are assumed to know Pxyyz or at least an upper bound on the quality of Eve’s
channel. In particular, the protocol and the codes used by Alice and Bob are known to
Eve. Every message communicated between Alice and Bob can be intercepted by Eve,
but it is assumed that Eve cannot insert fraudulent messages nor modify messages on
this public channel without being detected.

Possible attacks by Eve other than passive wire-tapping can be detected when an
unconditionally secure authentication scheme with a short initially shared secret key
is used. If only a computationally secure authentication scheme were used, the un-
conditional security would only be retained against passive, but not against active
wire-tapping.

A broadcast channel as described in the previous section is one of several possible
realizations for the distribution of random variables X,Y and Z. An alternative for
Alice and Bob to acquire random variables X and Y is to receive the signal of a
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satellite broadcasting random bits at a very low signal power (so that even if Eve uses
a much better and larger receiving antenna she cannot avoid at least a small bit error
probability). Quantum cryptography (see Section 4.4) is another example of such a
scenario where, according to the laws of quantum physics, Eve cannot obtain complete
information.

A key agreement protocol for such a scenario generally consists of at least two
phases. In the first phase, often referred to as information reconciliation 1, 5], Alice and
Bob exchange redundant information and apply error-correction techniques in order to
generate a shared string W which both of them know with very high probability while
Eve has only incomplete information about W. In the second phase, called privacy
amplification, Alice and Bob distill from W a shorter string S about which Eve has
only a negligible amount of information. Privacy amplification will be discussed in the
following section.

It was proved in [20] that the size of the secret key S that can be generated by any
protocol, not necessarily one of the two-phase type described above, is upper bounded
by

H(S) < max(I(X;Y|Z),I(X;Y))+ 1(S;CZ),

where C' summarizes the total communication between Alice and Bob over the public
channel. In other words, if I(S;CZ) must be negligible (which is the goal of such
a key agreement protocol), then Alice and Bob cannot generate a key that is longer
than the mutual information between X and Y. Moreover, because if Eve revealed her
random variable Z for free, this could only help Alice and Bob to generate a secret
key. Therefore, the remaining mutual information between X and Y when given Z,
I(X;Y|Z), is also an upper bound on H(S). Note that both I(X;Y|Z) < I(X;Y) or
I(X;Y|Z) > I(X;Y) is possible.

In order to be able to prove lower bounds on the achievable size of a key shared by
Alice and Bob in secrecy we need to make more specific assumptions about the distri-
bution Pxyz. One natural assumption is that the random experiment generating XY Z
is repeated many times independently: Alice, Bob and Eve receive XV = [X, ..., Xy],
YN =[V},...,Yy] and ZN = [Z,, ..., Zy], respectively, where

N
PxNyNzN = HPXiYiZi
i=1
and where Py,y,z, = Pxyz for 1 <7 < N.

This model of independent repetitions of a random experiment is well motivated
by the satellite scenario described above. Moreover, it is consistent with standard
information-theoretic models such as discrete memoryless sources and channels. The
natural quantity of most interest is defined as follows.

[_)eﬁnition 1 [21]. The secret key rate of X and Y with respect to Z, denoted
S(X;Y]|Z), is the maximum rate at which Alice and Bob can agree on a secret key S
while keeping the amount of information about S available to Eve arbitrarily small.
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It should be pointed out that the original definition of secret-key rate of [20], which
was motivated by the definition of secrecy capacity [35, 11|, was considerably weaker
in that only the rate at which Eve obtains information about S, rather than the total
amount, had to be arbitrarily small.

The following lower bound on the secret-key rate was proved in [21].
Theorem 3. 5(X;Y||Z) > max[I(Y;X) - I(Z; X), I(X;Y) - I(Z;Y)].

This theorem states that if either I(X;Y) > I(X;Z) or I(Y;X) > I(Y; Z), ie., if
Bob has more information than Eve about X (or Alice has more information than Eve
about Y'), then secret-key agreement is possible. Although the proof of the theorem
is quite involved and makes use of privacy amplification techniques discussed in the
following section, the result is quite intuitive. For instance if I(X;Y) > I(X;Z2),
it appears reasonable that Alice can send redundant information to Bob at a rate
of H(X|Y) which allows Bob to determine X”~. At the same time, Eve is left with
uncertainty about X% at arate H(X|Z)—H (X|Y) which is equal to I(X;Y)—I(X; Z).

It is quite surprising that even when neither I(X;Y) > I(X;Z) nor I(Y;X) >
1(Y; 7) is satisfied, secret-key agreement is nevertheless possible, i.e., the lower bound
of Theorem 3 is not tight. This was first illustrated in [20] for the described satellite
scenario in which Eve receives the bits (much) more reliably than both Alice and Bob.

4.3. Privacy amplification

A basic tool for applying information theory to cryptography is privacy amplification
originally introduced by Bennett, Brassard and Robert [3]. However, this technique was
only recently shown to be applicable to a wide range of scenarios by Bennett, Brassard,
Crépeau and Maurer [2] who provided a generalized analysis of privacy amplification.
These results are summarized briefly in this section. An important technique used is
universal hashing.

Definition 2. A class G of functions A — B is universal if, for any distinct z; and z-
in A, the probability that g(z1) = g(z2) is at most 1/|B| when ¢ is chosen at random
from G according to the uniform distribution.

Consider functions from {0,1}" to {0,1}". For r = n, the class consisting only of
the identity function is trivially a universal class. Consider the more interesting case
r < n. The class of all functions from {0,1}" to {0,1}" is obviously universal, but
it is not useful because there are too many functions in that class (it takes 72" bits
to specify a function). A more useful universal class is that of all linear functions
from {0,1}" to {0,1}" [9]. These functions can be described by r xn matrices M over
GF(2), i.e., by rn bits. Other universal classes, which are more economical in terms of
the number of bits needed to specify them, are discussed in [9, 33]. A very small such
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class requiring only n bits to specify a function is given in the following example.

Ezample. Let a be an element of GF(2") and also interpret x as an element of GF(2").
Consider the function {0,1}" — {0,1}" assigning to an argument x the first r bits of
the element az of GF(2"). The class of such functions for ¢ € GF(2") with a # 0 is a
universal class of functions for 1 <r < n.

We further need the following definition of an alternative measure of information.

Definition 3. Let X be a random variable with alphabet X and distribution Px. The
collision probability P.(X) of X is defined as the probability that X takes on the same
value twice in two independent experiments, i.e.,

P(X) =Y Py(x).

TeX

The collision entropy of X, also known as the Renyi entropy of order two [25], is defined
as the negative logarithm of its collision probability:

H.(X) = —log, P,(X).

For an event &, the collision entropy of X conditioned on £, H.(X|E), is defined
naturally as the collision entropy of the conditional distribution Pxe.

In order to contrast collision entropy with the normal entropy measure defined by
Shannon, we will in the sequel refer to the latter as “Shannon entropy”. Note that
collision entropy (like Shannon entropy) is always positive. H.(X) can equivalently
be expressed as H.(X) = —log E[Px(X)], where E[-] denotes the expected value.
Shannon entropy H(X) can be expressed similarly as H(X) = —F[log Px(X)]. It
follows from Jensen’s inequality (see [4], p. 428) that collision entropy is upper bounded
by the Shannon entropy:

H.(X) < H(X),

with equality if and only if Py is the uniform distribution over X' or a subset of X.

We now can state the main theorem on privacy amplification.

Theorem 4. Let Pyw be an arbitrary probability distribution where W 1is known to
both Alice and Bob and V' summarizes the complete information known to Eve. If Eve’s
collision entropy H.(W|V = v) about W is known to be at least t and Alice and Bob
choose S = G(W) as their secret key, where G is chosen at random from a universal
class of hash functions from W to {0,1}", then

2r—t
In2°

H(S|G,V=v) > r—

This theorem states that if for some reason one knows that the probability dis-
tribution about W seen by Eve, Py y—,, satisfies a certain global constraint, namely
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H. (W|V =wv) > t, then Eve’s information about the secret key S, H(S)— H(S|G,V =
v), is provably exponentially small in the excess compression ¢ — r. Note that a state-
ment about the particular value V' = v known to Eve is stronger that a statement
about an average over all values of V. Theorem 4 can be applied in many scenarios
like quantum cryptography, the satellite scenario mentioned earlier as well as if Eve
can obtain arbitrary ¢ bits of deterministic information about W (see corollary below)
because in these scenarios one knows a lower bound on Eve’s collision entropy.

Theorem 4 also implies the following result on privacy amplification against deter-
ministic information first stated in [3]. (For a proof see [2].)

Corollary 5. Let W be a random n-bit string with uniform distribution over {0,1}",
let V.= e(W) for an arbitrary eavesdropping function e : {0,1}" — {0,1}* for some
t<mn, let s < n—1t be a positive safety parameter, and let r =n—1t—s. If Alice
and Bob choose S = G(W) as their secret key, where G is chosen at random from a
universal class of hash functions from {0,1}" to {0,1}", then Eve’s total information
about the secret key S, given G and V', satisfies

I(S;GV) < 27%/In2.

It should be pointed out that averaging over the values of V' is necessary here. Note

also that Alice and Bob learn nothing about the particular function e selected by
Eve. Equivalently, Eve could be allowed to obtain W and to perform an arbitrary
computation on W, as long as she is guaranteed to keep at most ¢ bits of the result of
her computation.

4.4. Quantum cryptography

Quantum cryptography (see [1] and references therein) can be viewed as a special
case of the model of secret-key agreement discussed above. The laws of quantum
physics (provided they are correct) guarantee that an eavesdropper can measure at
most one bit of information about the real-valued polarization angle of a photon. This
fact can be exploited by sending single photons whose polarization encodes two bits of
information, i.e., whose polarization takes on any one of four different values equally
likely.

The major difference between quantum cryptography and secret-key agreement as
discussed above, which requires an extension of the model, is that an eavesdropper can
influence the distribution Pxyz by her measurement. In other words, she can choose
from a collection of such distributions. However, quantum physics implies that all of
these distributions leave Eve with sufficient collision entropy to be exploited by privacy
amplification.

4.5. Randomized Ciphers
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A quite different approach to beating Shannon’s pessimistic bound (Theorem 1)
on the key length was described in [19]. In this model it is assumed that the public
randomizer R (cf. Fig. 1) is a very large array of random bits which is publicly available
and can be accessed by everybody, but which is infeasible to read entirely. For instance,
one could (somewhat unrealistically) think about the surface of the moon which could
be scanned to provide random bits. It is assumed that reading these bits is possible
without error.

What distinguishes Alice and Bob from Eve, however, is that they know a short
secret key which specifies which bits need to be accessed and how they must be com-
bined in order to compute a key stream to be used as a one-time pad. Unless Eve reads
essentially all the public random bits, which is completely infeasible, she is left with
zero information about the key stream with overwhelming probability.

5. Conclusions

This paper has illustrated many relation between information theory and cryptogra-
phy. While the results of Section 3 were pessimistic in the sense that they only showed
what is impossible to achieve, a slight modification of the classical Shannon model of
a cipher system allows to derive constructive results on perfect secrecy, some of which
were described in Section 4. We hope that this paper stimulates further research in
unconditionally-secure secret-key agreement protocols.
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