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Abstract. A new statistical test for random bit generators is presented which, in
contrast to presently used statistical tests, is universal in the sense that it can detect
any significant deviation of a device’s output statistics from the statistics of a truly
random bit source when the device can be modeled as an ergodic stationary source
with finite memory but arbitrary (unknown) state transition probabilities. The test
parameter is closely related to the device’s per-bit entropy which is shown to be the
correct quality measure for a secret-key source in a cryptographic application. The
test hence measures the cryptographic badness of a device’s possible defect. The test
is easy to implement and very fast and thus well-suited for practical applications.

A sample program listing is provided.
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1. Introduction

A random bit generator is a device that is designed to output a sequence of statistically
independent and symmetrically distributed binary random variables, i.e., that is designed to
be the implementation of a so-called binary symmetric source (BSS). In contrast, a pseudo-
random bit generator is designed to deterministically generate a binary sequence that only

appears as if it were generated by a BSS.

!This work was supported by Omnisec AG, Switzerland. A preliminary version of this paper was presented
at CRYPTO 90, Aug. 11-15, 1990, Santa Barbara, CA, and will appear in the proceedings.



Random bit generators have many applications in cryptography, VLSI testing, proba-
bilistic algorithms and in other fields. Their major application in cryptography is as the
secret-key source of a symmetric cipher system, but random bit generators are also required
for generating public-key parameters (e.g., RSA-moduli) and for generating the keystream
in the well-known one-time pad system (e.g., see [10]). In these applications, the security
crucially depends on the randomness of the source. In particular, a symmetric (secret-key)
cipher whose security rests on the fact that an exhaustive key search is infeasible may be
completely insecure when not all keys are equiprobable. Similarly, the security of the RSA
public-key cryptosystem may be strongly reduced when, because of a statistical defect in the
random source used in the procedure generating the primes, the two primes are with high

probability chosen from a small set of primes only.

This paper is concerned primarily with the application of random bit generators as the
secret-key source of a symmetric cipher system. The paper is not concerned with pseudo-
random bit generators, i.e., with the security evaluation of practical keystream generators
for stream ciphers. However, it is certainly a necessary (but far from sufficient) condition for

security that such a keystream generator pass the test presented here.

Randomness is a property of an abstract mathematical model that is characterized by
probabilities. (In the context of random number generation the term “random” is also used
as a synonym for independent and uniformly distributed, i.e., for the special model of a BSS,
and we will make the same use of terminology.) Whether a probabilistic model can give
an exact description of reality is a philosophical question related to the question of whether
the universe is deterministic or not, and seems to be impossible to answer to everyone’s
satisfaction. On the other hand, there exist chaotic processes in nature, such as radioactive
decay and the thermal noise in a transistor, that allow the construction of a random bit
generator whose behavior is for all practical applications equivalent to that of a BSS. It
is a non-trivial engineering task, however, to design an electronic circuit that exploits the
randomness of a physical process in such a manner that dependencies between bits or a bias
in the output are avoided. In a cryptographic application it is therefore essential that such
a device be tested extensively for malfunction after production, and also periodically during

operation.

The new proposed statistical test for random bit generators offers two major advantages
over the presently used statistical tests (including the common frequency test, serial test,
poker test, autocorrelation tests and run test which are described in [1] and [7]). First, unlike
these tests, the new test is able to detect any one of a very general class of possible defects
(deviations from the statistics of a BSS) a generator may have, including all the defects the
above mentioned tests are designed to detect. This class of defects consists of those that can
be modeled by an ergodic stationary source with limited memory, which can reasonably be
argued to comprise the possible defects that could occur in a practical implementation of a

random bit generator. Second, the new test measures the actual cryptographic significance



of a defect. More precisely, the test parameter measures the per-bit entropy of a source,
which is shown to be related to the running time of the enemy’s optimal key-search strategy
when he exploits knowledge of the secret-key source’s statistical defect. In other words, the
per-bit entropy of the secret-key source measures the effective key size of a cipher system
under the (for this paper natural) assumption that there exists no essentially faster way than

an exhaustive key-search for breaking the cipher.

The outline of the paper is as follows. The concept of a statistical test for randomness
and the theoretical and practical limitations of statistical randomness testing are discussed
in Section 2. In Section 3, the model of an ergodic stationary source is introduced. An
analysis of the effective key size of a cipher system with a defective secret-key source is given
in Section 4. Some theoretical considerations concerning the implementation of statistical
tests are given in Section 5 and some previously proposed statistical tests are reviewed. The
new universal statistical test is described in Section 6 and some conclusions are drawn in the
final section. A reader who is interested only in the implementation of the test but not in
the theoretical and philosophical background can skip Sections 2 to 5. Section 6 is almost

self-contained and provides a sample program for implementing the test.

2. The Concept of a Statistical Test

In this section the problem of deciding whether a given device outputs statistically inde-
pendent and symmetrically distributed binary digits is discussed from a theoretical viewpoint.
When no theoretical proof based on the device’s physical structure can be given (which seems
to be impossible), such a decision must be based on an observed sample output sequence of
a certain length N. Let B denote the set {0,1}. A deterministic algorithm 7' taking as
input such a sample sequence and producing as output a binary decision is usually called a

statistical test and can be viewed as a function

T : BN — {accept, reject}

that divides the set B of binary length N sequences s = s1,...,sy into a (usually small)

set

St = {SN T (sV) = reject} c BY
of “bad” or “non-random” sequences and the remaining set of “good” or “random” sequences.
The quotation marks refer to the fact that, as is explained below, no such attribute can be
given to a particular sequence. Note that although the number and positions of output bits
observed by a test algorithm may depend on the sequence itself, the length N of the sample
sequence can nevertheless without loss of generality be considered to be a constant equal to

the maximum possible length of an observed sequence.

A binary symmetric source emits every sequence of a given length N with the same

probability 27 and therefore it seems to be impossible to argue that one particular sequence



is “more random” than another sequence. However, an interesting approach to the problem
of defining randomness for finite sequences has been taken by Kolmogorov [8] who defined
the randomness of a sequence, informally, as the length of the shortest possible description
of a generation rule for the sequence. A sequence can be considered “random” if one of
the shortest descriptions is the sequence itself. More formally, the amount of randomness
(or Kolmogorov-complexity) of a binary sequence is defined as the length of the shortest
Turing-machine program for a fixed universal Turing machine that generates the sequence.
Martin-Lof showed that, in an asymptotic sense, a sequence that is random according to this
definition satisfies all computable statistical tests for randomness [9]. A minor problem with
Kolmogorov’s definition is that the length of the shortest program depends on the particular
machine used. A much more severe and intrinsic problem, which is related the fact that the
halting problem for Turing machines is undecidable [6], is that the Kolmogorov-complexity
is not computable, even using infinite computing power. In other words, it is theoretically
impossible, not only computationally infeasible, to check all possible generation rules for a

given sequence and to choose the shortest one.

In view of the above it seems to be somewhat surprising that statistical randomness tests
can be successfully used in practical applications, including cryptographic ones. The rea-
son is that in many cases it may be reasonable to assume that, if a device is defective or
badly designed, it behaves according to a certain probabilistic model with one or several un-
known parameters, for instance a binary memoryless source or an ergodic stationary source
(cf. Section 3). It is only under such an assumption, which is usually not stated explicit-
ly, that statistical tests can be useful. As a consequence of such a restrictive assumption,
however, a statistical test will not detect other types of non-randomness. For instance, the
binary extension of 7, the sequence 11001001000011111101101010100..., can be generated
deterministically and hence is not random and useless for cryptographic purposes, but it has
nevertheless all commonly considered properties of a random sequence and will therefore pass

every “reasonable” statistical test.

For every particular probabilistic model with specified parameters (e.g., a binary memo-
ryless source emitting 1’s with probability 0.4 and 0’s with probability 0.6), the problem of
deciding whether the tested device behaves according to this specified model or whether it is
a BSS can be solved using the well-established framework of hypothesis testing (e.g., see [2]).
For a parametrized model, however, statistical tests are generally not optimal in a hypothesis
testing sense for two reasons. First, unless a probability distribution over the different models
(or the parameters of a certain model) is fixed, a satisfactory overall optimality criterion can-
not be defined. Second, as is often the case in hypothesis testing, the optimal strategy, even
for a particular choice of parameters, may be infeasible to implement. Many statistical tests
are therefore heuristic. Some tests (e.g., the frequency test and the serial test, cf. Section 5)
can be interpreted as follows: the parameters of a certain statistical model are estimated from
the sample sequence and a single test parameter is extracted from the differences of these

estimated parameters to those of a BSS. Based on the probability distribution of the test pa-



rameter for a truly random sequence, the sample sequence is accepted or rejected. In terms
of this interpretation, the advantages of the test presented in this paper can be described as
follows. First, the test is based on the very general model of an ergodic stationary source (cf.
Section 3) whose parameters are transition probabilities. Second, the test parameter has a
cryptographic interpretation: it is very closely related to the per-bit entropy of the source,
which measures the effective key size of a cipher system (cf. Section 4). Although the per-bit
entropy is a function of the parameters of the model (the transition probabilities), our test

does not estimate the parameters, but rather estimates the per-bit entropy directly.

3. Statistical Models for Bit Generators

The simplest probabilistic model of a bit generator is a binary memoryless source (BMS)
which outputs statistically independent and identically-distributed binary random variables
and is characterized by a single parameter, the probability p of emitting 1’s. This model will
be denoted by BMS,. Note that a BMS, ), is equivalent to a BSS. Another simple model,
denoted by ST,, emits 0’s and 1’s with equal probability, but its transition probabilities are
biased: a binary digit is followed by its complement with probability p and by the same
digit with probability 1 — p. This is an example of a binary stationary source with one bit
of memory. In general, the probability distribution of the i-th bit of a generator’s output
may depend on the previous M output bits where M is the memory of the source. In many
applications it is reasonable to assume that an even defective or badly designed random bit

generator can well be modeled by such a source with relatively small memory.

Consider a source S that emits a sequence Uy, Us,, Us, ... of binary random variables.
If there exists a positive integer M such that for all n > M, the conditional probability
distribution of U,, given Uy, ..., U,_1, depends only on the most recent M output bits, i.e.,
such that

Py v,y Wnltn—1 . cw1) = Pyu,_y v, p (Unltn—1 -« tnnr) (1)
for n > M and for every binary sequence (uy,...,u,) € B™, then the smallest such M is
called the memory of the source S and ¥, = [U,_1,...,U,_n] denotes its state at time
n. Let ¥y = [Ug,...,U_pr41] be the initial state where U_ps41, ..., Uy are dummy random

variables. If in addition to (1) the source satisfies
Pl]'n|2n(u|a-) = PU1|21 (Ulo')

for all n > M and for all v € B and 0 € BM, then it is called stationary. A stationary
source with memory M is thus completely specified by the probability distribution of the
initial state, Py, , and the state transition probability distribution Py, |5 . The state sequence
forms a Markov chain with the special property that each of the 2M states has at most 2

successor states with non-zero probability. See [5], chapters XV and XVI, for a treatment



of Markov chains. We will denote the 2M possible states of the source (or the Markov
chain) by the integers in the interval [0, oM _1]. (3, = 7 means that U,_1...U,_ps is the
binary representation of j.) For the class of ergodic Markov chains (see [5] for a definition),
which includes virtually all cases that are of practical interest, there exists an invariant state
probability distribution pg, ..., psar_; such that

lim P, (j) = p;

n—oo

for 0 < j < 2M — 1. Moreover, the probabilities p;’s are the solution of the following system

of 2M linear equations:

2M_1
2 i &
i=0
2M_1
pi = Y Pos,(ilk) pr for 0<j<2M 2, 3)

k=0

An example of an ergodic stationary source is given at the end of the next section.

4. The Effective Key Size of a Cipher with a Defective Key
Source

A good practical cipher is designed such that no essentially faster attack is known than
an exhaustive key search. The size of the key space is chosen large enough to ensure that
to succeed in such an exhaustive search, even with only very small probability of success,
requires an infeasible searching effort. If not all possible values of the secret key have equal a
priori probability, then the enemy’s optimal strategy in an exhaustive key search is to start
with the most likely key and to continue testing keys in order of decreasing probabilities. Let
7 denote the secret key, let n be its length in bits and let zq, 29, ..., 29n be a list of the key
values satisfying

Pz(z1) > Pz(z) > -+ > Pz(z9n).

For a given source S and for § satisfying 0 < § < 1 let ug(n,d) denote the minimum number
of key values an enemy must test (using the optimal key-searching strategy) in order to find

the correct key with probability at least § when S is used to generate the n-bit key 7, i.e.,

k

ps(n,d) = min {k : EPZ(ZZ-) > 5}. (4)
=1

We define the effective key size of a cipher system with key source S to be log, ps(n, %),

i.e., the logarithm of the minimum number of keys an enemy must try in order to find the

correct key with probability at least 50%. The choice § = 1/2 in this definition is somewhat



arbitrary, but in general, for large enough n, log, ts(n,d)/n is almost independent of § when
4 is not extremely close to 0 or 1. Note that when the key is truly random, i.e., when S is a
binary symmetric source, then log, pis(n, %) =n-—1.

We now determine the effective key size of a cipher system whose key source is BMS,,.
Without loss of generality assume that 0 < p < 1/2. Note that the source ST, described
in the previous section can be modeled by the source BMS, with a summator at the output
(integrating modulo 2 the output bits of the BMS,)). Therefore the set of probabilities of keys
and hence also the effective key size is identical for both sources. The probability distribution
of Z is given by

Pz(z) = p"@ (1 —p)r ),
where w(z) denotes the Hamming weight of z. In order to succeed with probability approx-
imately 1/2 the enemy must examine all keys z with Hamming weight w(z) < pn. The

effective key size is thus well approximated by

L
log, HBMS,, (n, %) ~ log, Z (z) . (5)
=0

From eq. A.21 in [13] one can derive the inequalities

t

1 Ioe n n
- 9nH(/n) < < < onH(t/n) 6
8t(n —1t)/n - (t) - E(z) - (6)

=0
for t < n/2, where H(z) is the binary entropy function defined by
H(z) = —zlogyz — (1 —z)logy(1 — ) (7)

for 0 < z < 1 and by H(0) = H(1) = 0. Note that H(z) = H(1 — z) for 0 < z

Inequalities (6) suggest the following accurate approximation:

log, E (:L) ~ nH(t/n),

=0

IN
—

which together with (5) gives
logy ppms, (n, 3) ~ nH(p).
Using (6) one can prove that this approximation is asymptotically precise, i.e., that

. log, uBms, (n, 6)
lim
n—00 n

= H(p)
for 0 < 4§ < 1.

Note that the entropy per output bit of the source BMS,, H(p), is hence equal to the
factor by which the effective key size is reduced. Shannon proved (see [11], theorem 4) that
for a general ergodic stationary source S,

lim 10g2 Hs (n7 5)

n—00 n

- HS7



for 0 < § < 1, where Hg is the per-bit entropy of S defined as

2M_q 2M_q

Hs = — Z P; E Py, s, (kl7) logy Py, s, (Kl7), (8)

7=0 k=0

and where the stationary state probabilities p; are for 0 < j < 2M _ 1 defined by (3). In
other words, for the general class of ergodic stationary sources, the per-bit entropy Hg is the
correct measure of their cryptographic quality when they are used as the secret-key source of
a cipher system. Conversely, the per-bit redundancy, 1 — Hg, is the correct measure of the
cryptographic badness of a key source. Because every state j can have at most two successor
states with non-zero probability, namely j* = (25) mod 2™ and 7** = (2j + 1) mod 2, the

expression (8) can be simplified:

2M_1

Hs = E pi H(Pg, s, (5717))- (9)

FEzxample: Consider a source that emits independent and symmetrically distributed bits
except when two consecutive bits are identical, in which case the next bit is different with
probability 0.8. For instance, when two 0’s have occurred, the next bit is 1 with probability
0.8 and 0 with probability 0.2, but when the pair 01 occurred, the next bit is 0 or 1 both
with probability 0.5. This source is an ergodic stationary source with memory M = 2, and
it is easy to verify that the state transition probabilities are given by P,z (0/0) = 0.2,
Py, 5, (1]0) = 0.8, Py, 5, (2]1) = 0.5, Py, 5, (3[1) = 0.5, Py, 5, (12) = 0.5, Py, x5, (3]2) = 0.5,
Pg, iz, (1]3) = 0.8 and Py, |5, (3|3) = 0.2. The stationary state probabilities can be obtained as
a solution of the system (2),(3): po = ps = 5/26 and p; = p2 = 4/13. The per-bit entropy is
according to (9) equal to 2(5/26)H (0.2)+2(4/13)H (0.5) = (5/13)-0.72194(8/13) -1 = 0.893.
The output of this source is thus 10.7% redundant.

5. Review of Some Previous Statistical Tests

As mentioned in Section 2, a statistical test T for sequences of length N is a function
T : BN — {accept, reject} which divides the set BN of binary length N sequences s =

S1,...,8N into a (small) set
_ N . Ny _ N
St = {s :T(s™) = reJect} C B

of “bad” sequences and the remaining set of “good” sequences. The probability that a

sequence generated by a BSS is rejected is



and will be called the rejection rate. In a practical test, p should be small, for example
p~0.001...0.01.

A statistical test T for a reasonable sample length N cannot feasibly be implemented by
checking a list of the set S7. Instead, a statistical test T is typically implemented by specifying
an efficiently computable test function fr that maps the binary length N sequences to the
real numbers R:

fr:BY =R N fr(sV) .

The probability distribution of the real-valued random variable fr(R"N) is determined, where
RYN denotes a sequence of N statistically independent and symmetrically distributed binary
random variables, and a lower and an upper threshold ¢; and t,, respectively, are specified
such that

Prlfr(RYN) <t1] + Pr[fr(RN) > 1] = p.

Usually Pr[fr(RN) < t1] = Pr[fr(RN) > t3] = p/2. The set St of “bad” sequences with
cardinality |St| = p2" is defined by

St = {SN € BN . fT(sN) <t or fT(sN) Ztg}. (10)

Usually, fr is chosen such that fr(RY)is distributed (approximately) according to a well-
known probability distribution, most often the normal distribution or the x? distribution with
d degrees of freedom for some positive integer d. Since extensive numerical tables of these
distributions are available, such a choice strongly simplifies the specification of ¢; and ¢, for
given p and N. The normal distribution results when a large number of independent and
identically distributed random variables are summed. The y? distribution with d degrees of
freedom results when the squares of d independent and normally distributed random variables

with zero mean and variance 1 are summed.

In the sequel we briefly review the most popular statistical tests for random bit generators.
The simplest test is the frequency test Tr which is used to determine whether a generator

is biased and is based on the model BMS, with one parameter. For a sample sequence

sV = sy,...,sN, the test parameter fr,(s") is defined as
9 N
N
T.(8") = — s; —N/2|.
The number of 1’s in a random sequence RN = Ry,..., Ry is distributed according to a

binomial distribution which is very well approximated by the normal distribution with mean
N/2 and variance N/4 since F[R;] = 1/2 and Var[R;] = 1/4 for 1 < i < N. Thus the
probability distribution of fTF(RN) is for large enough N well approximated by the normal
distribution with zero mean and variance 1, and reasonable values for the rejection thresholds
in (10) are t = —t; = 2.5...3.



In the so-called serial test Ts with parameter L, the sample sequence sV is cut into N/L
consecutive blocks of length L (e.g., L = 8), and the number n;(s") of occurrences of the

binary representation of the integer i is determined for 0 < i < 28 — 1. frs is defined as

12t 23 N2
frs(sY) = -~ ; <m(3N)—ﬁ>

A slightly simplified explanation of this formula is that the term N/(L2%) is the expected
value of n;(s"), and the purpose of the term L2 /N is to normalize the (unsquared) terms in
the sum, which have zero mean, to have variance 1. The probability distribution of fTS(RN)
is for large N very well approximated by the y? distribution with 2% — 1 degrees of freedom.
The serial test is based on the difficult to motivate statistical model of a source that emits

statistically independent blocks of length L.
In the run test Tr with parameter L, the number n?(s") of 0-runs of length i and similarly
H(s™) of 1-runs of length i in the sample sequence sV

1<i< L (eg., L =15). fr, is defined as

the number n are determined for

L (nb(sV) — N/2i+2)2
fTR(SN) = Z Z( Z( ]17/2i+2/ )

be{0,1} =1

and the probability distribution of fTR(RN) is for large N very well approximated by the
x? distribution with 2L degrees of freedom because the terms in the sum are the squares of

independent random variables that are virtually normally distributed with zero mean and

variance 1.
An autocorrelation test with delay 7 for the sequence s’V = sq,..., sy is a frequency test
for the sequence s &b S147,52 P Soqr,...,SN—r B Sy, Where & denotes addition modulo 2.

This test is used to detect a possible correlation between bits at distance 7 and is for 7 = 1
based on the model ST, (cf. Section 3).

In many practical applications a combination of several of these tests is used which cor-
responds to a single test T for which the set St is defined as the set of sequences that pass
all these tests. Note that in general it is difficult to determine the rejection rate for such a

combined test because the tests are not independent.

6. The New Universal Statistical Test T},

The new statistical test Ty proposed in this section offers two main advantages over the

statistical tests discussed in the previous section:

(1) Rather than being tailored to detecting a specific type of statistical defect, the new

test is able to detect any one of the very general class of statistical defects that can be

10



modeled by an ergodic stationary source with finite memory, which includes all those
detected by the tests discussed in the previous section and can reasonably be argued to
comprise the possible defects that could realistically occur in a practical implementation

of a random bit generator.

(2) The test measures the actual amount by which the security of a cipher system would
be reduced if the tested generator G were used as the key source, i.e., it measures
the effective key size pg(n, %) of a cipher system with key source G (cf. Section 4).
Therefore, statistical defects are weighted according to the potential damage they would

cause in a cryptographic application.

These two advantages are due to the fact that for the general class of binary ergodic stationary
sources with finite memory M < L (cf. Section 3), where L is a parameter of the test, and
for an arbitrary (unknown) choice of the conditional probabilities of the model, the resulting
test parameter fr,, is closely related to the per-bit entropy Hg of the source (cf. Section 4).
This claim will be justified after the following description of the test. (In another context, a

completely different use of entropy in a statistical test has previously been proposed in [3].)

The test Ty is specified by the three positive integer-valued parameters L, ) and K. To
perform the test 777, the output sequence of the generator is partitioned into adjacent non-
overlapping blocks of length L. The total length of the sample sequence s is N = (Q+ K)L,

where K is the number of steps of the test and () is the number of initialization steps. Let

b”l(SN) = [SL(n—1)+17 sy SLn]

for 1 < n < Q+ K denote the n-th block of length L of the sample sequence sV = sy, ..., sn.
Forn=0Q+1,...,Q+ K, the sequence is scanned for the most recent occurrence of the block
b,(sV), i.e., the least positive integer i < n is determined such that b,(sN) = b,_;(sV). Let
the integer-valued quantity A, (s") be defined as taking on the value i if the block b, (sV) has
previously occurred and otherwise let A, (s™) = n. The test function fr, (s") is defined as the
average of the logarithm (to the base 2) of the K terms Ag11(sV), Agi2(s™), ..., Agrr (V).
More formally, the test function fr,, : BN 5 R: sV fTU(sN) is defined by

1 Q+K
fro(s¥) = 2 32 logy An(s") (11)
n=Q+1

where for Q +1<n < Q+ K, A,(s") is defined by

n if there exists no pos-

N itive ¢ < n such that
Ap(s™) = bn(sN) :bn—i(SN)7 (12)

min{i: i>1, b,(s"V) = b,_;(sV)} otherwise.

11



program UniversalTest(input,output);

const L=8; V=256; Q=2000; K=20000;

var i,n: integer; sum,fTU: real;
tab: array [0..V-1] of integer;

block: array [1..max] of integer;

begin
for i:=0 to V-1 do tab[i]:=0; (* initialization *)
for n:=1 to Q do tab[block[n]]:=n; (x* ? *)
sum:=0.0;

for n:=Q+1 to Q+K do begin
sum:=sum+1n(n-tab[block[n]]);
tab[block[n]] :=n;

end;

fTU:=(sum/K)/1n(2.0); writeln(fTU);

end.

Figure 1: Listing of a PASCAL program for computing the test parameter fr,, (s")

for a given sequence sV = s;,..., sy that is assumed to be stored blockwise

in the array block (b, (s") = [SL(n=1)41;- - -, SLn] is stored in block[n]).

Rather than by scanning the previous blocks b,_1(s"),b,_2(s"), ... for the most recent
occurrence of the block bn(sN), for every n, the test Ty can be implemented much more
efficiently by using a table (denoted in Figure 1 as tab) of size V = 2 that stores for each
L-bit block the time index of its most recent occurrence. For each block b,,(s™) the procedure
consists of two simple steps: (1) A, (sV) is easily computed as n — tab(bh,(s")) and the term
logy A, (s") is added to an accumulator, and (2) tab(b,(s")) is updated to the new most
recent time index n of the block bn(sN). A sample PASCAL program for implementing the
test is listed in Figure 1. The sequence sV is for illustration purposes assumed to be stored
blockwise in the array block, i.e., block[n] contains the integer whose binary representation

N may be too long to be

is bn(sN). Clearly, in a realistic implementation, the sequence s
stored completely. In such a case there will for example be a function which, when called,
increments the index n and returns the n-th block b, (s™) of sV. The function 1n computes

the natural logarithm. Note that log,(z) = In(z)/In(2).

For performing a statistical randomness test one needs to know the distribution of the
test parameter for a truly random sequence in order to specify the acceptance and rejection
regions for the test parameter of a sample sequence. The mean and variance of a single term
log, A, (RYN) of the sum defining fr,, (RY) can be computed for Q — oo according to (16) and

(17) below. Because the expected value of the average of several random variables is equal

12



to the average of the expected values, the expected value E[fr,(R"™)] of the test parameter
fr, for a random sequence RV is equal to F[log, A,(R")]. The variance of the sum of
statistically independent random variables is equal to the sum of the variances. However,
the quantities A, (R") are not completely independent, and as a consequence, the variance
of fr,(RN) is somewhat smaller than expected. Let ¢(L, K) denote the factor by which the
standard deviation of fr,, (R") is reduced compared to what it would be if the terms A, (R")

were independent, i.e., let
Var[fr, (RY)] = ¢(L, K)*- Var[log, A, (R™)]/K.

For L > 3, ¢(L,2") is very close to 0.8, and for K > 2", ¢(L, K) is close to 0.5, 0.6 and 0.65
for L =4, L = 8 and L = 12, respectively. Extensive simulations have suggested that for
K > 2l

e(L,K) = 0.7—0.8/L+ (4+32/L)K~>/F/15 (13)
is a good approximation for the constant ¢(L, K). In summary, the distribution of the test
parameter fr,,(RY) for a truly random sequence has a mean value of precisely E[fr,(R")]

and is very well approximated by the normal distribution with standard deviation

o = o(L, K)\/Varllogy A, (RN)]/E, (14)

where E[fr,(R"™)] and Var[log, A, (R")] are listed in Table I for 1 < L < 16.

To implement the test Tyy we recommend to choose the parameters I between 6 and
16, inclusive, @ > 10 - 2" and K as large as possible (e.g., K = 1000 - 2L). This choice
for () guarantees that with high probability, every L-bit pattern occurs at least once in
the first ) blocks of a random sequence. We also recommend to choose a rejection rate of
p =~ 0.001...0.01, depending on the application. A device should be rejected if and only if
either fr, (SN) <ty or fTU(sN) > tg, where the thresholds t; and 5 are defined by

tr = E[fTU (RN)] —yo and ity = E[fTU(RN)] + yo,

where the standard deviation o is given by (14) and where y, the number of standard devi-
ations that fTU(SN) is allowed to be away from the mean value, must be chosen such that

N(=y) = p/2. N(z) is the integral of the normal density function and is defined as

N(z —&/2 e

1 xr
)= = e

27 J—oo
A table of A'(z) can be found in almost every book on statistics or probability theory (e.g.,
see [5], p. 176). For example, to obtain a rejection rate of p = 0.01 or p = 0.001 one must
choose y = 2.58 or y = 3.30 respectively. Note that o decreases like 1/v/K when K increases.
Like for any other statistical test, increasing the length of the sample sequence reduces the
standard deviation and therefore allows to detect smaller deviations from the statistics of a

BSS. Note that the fact that ¢(L, K) is known only approximately can lead to a rejection rate
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L | Elfr, (RY)] | Varllogy An(RY)] || L | E[fr, (RY)] | Var[log, An(RY)]
1| 0.7326495 0.690 9 | 8.1764248 3.311
2 | 1.5374383 1.338 10 | 9.1723243 3.356
3| 2.4016068 1.901 11| 10.170032 3.384
4| 3.3112247 2.358 12 | 11.168765 3.401
5| 4.2534266 2.705 13 | 12.168070 3.410
6 | 5.2177052 2.954 14 | 13.167693 3.416
7| 6.1962507 3.125 15 | 14.167488 3.419
8 | 7.1836656 3.238 16 | 15.167379 3.421

Table I. Expected value of fr, (RY) and variance of log, A, (RY) for the test Ty
with parameters L, Q — oo and K, where RY is a truly random sequence.
Var|[fr, (RY)] is equal to ¢(L, K)? - Var[log, An(RY)] where ¢(L, K) is well
approximated by (13).

that is slightly different from p, but has no other effect on the test. The precise computation

of the constants ¢(L, K') would require a considerable if not prohibitive computing effort.

The definition of Ty is based on the idea, which was independently suggested by Ziv
[14], that a universal statistical test can be based on a universal source coding algorithm.
A generator should pass the test if and only if its output sequence cannot be compressed
significantly. However, instead of actually compressing the sample sequence we only need to
compute a quantity that is related to the length of the compressed sequence. The formulation
of our test was motivated by considering the universal source coding algorithms of Elias [4]
and of Willems [12], which partition the data sequence into adjacent non-overlapping blocks
of length L. For L — oo, these algorithms can be shown to compress the output of every
discrete stationary source to its entropy. The universal source coding algorithm due to Ziv and
Lempel [15] seems to be less suited for application as a statistical test because it seems to be
difficult to define a test function f7 such that the expected value of fT(RN) can be computed.
No indication of the suitability of the Ziv-Lempel algorithm for a practical implementation

of a statistical test is given in [14].

In the sequel we derive expressions and numerical values for the quantities E[fr,(RV)]
and Var[logy A, (RY)] under the admissible assumption that @ — co. For a source emitting

the sequence of binary random variables UN = Uy, Uy, ..., Ux we have

Pr[A, (UN)=1] =

Z Pr [bn(UN) = b7 bn—l(UN) 7£ b, . '7bn—i+1(UN) # b7 bn—z(UN) _ bi|
be BN

for 2 > 1. When the blocks bn(UN) are statistically independent and identically distributed,
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then the above probability factors:

Pr[A,(UN) =i] = Z (Pr[b, (UN) = b))% - (1 = Pr[b,(UN) = b])*! (15)

beBN
for 2 > 1. For a binary symmetric source we thus have
Pr[A,(RN) =4 = 27F(1 - 271!

for 2 > 1. Hence
Elfr,(RN)] = FE[logy A,(RY)] = 2-LZ )~ log, i. (16)

The variance of log, A, (RY) is
Varlogy An(RY)] = Fl(log, A (RN>)2] — (Ellogy A (R™)])?
= 27 LZ ! (logy 1)* — (E[fr, (RY)])*. (17)

Table I was compiled using (16) and (17) and summarizes F[fr, (R")] and Var[log, A,(RN)]
for 1 < L < 16. Note that E[fr,(R"™)] is closely related to the entropy of a block, which is
L bits. In fact, it is shown below that E[fr, (R")] — L converges to the constant -0.8327 as
L — co.

In order to show that for L — oo, E[fr,(R™)] — L and Var[log, A, (R")] converge (ex-
ponentially fast) to constants, let v(r) and w(r) be defined as

é er—r" 'log, i (18)
=1
and -
w(r) 2, (1 —7)"(log, 1)2. (19)
=1
One can show that
. T > —¢ _ A
}1_1}1% [v(r) +logy,r] = 71»1—%/,n e “log, £dé = —0.832746 = C (20)
and
lim [w(r) = (log; )2+ 2Clogy 1] = lim [ e *(logy §)%d¢ = 4.117181 2 D2
r— r—r r

Note that E[fr,(RV)] = v(27%) and hence it follows from (20) that

lim (E[fr,(R)] - 1) = C.

L—oo
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Lip Elfry(Ugus, )] | Th(p) +C | Var[logy An(Udlys, )]
8 | 0.50 7.18367 7.16725 3.239
8 | 0.45 7.12687 7.10945 3.393
8 | 0.40 6.95559 6.93486 3.844
81 0.35 6.66713 6.63980 4.561
8 1 0.30 6.25683 6.21758 5.482
16 | 0.50 15.16738 15.16725 3.421
16 | 0.45 15.05179 15.05165 3.753
16 | 0.40 14.70268 14.70246 4.733
16 | 0.35 14.11275 14.11234 6.319
16 | 0.30 13.26886 13.26791 8.425

Table II. Relation between the per-bit entropy of a biased binary memoryless source
BMS, and the expected value E[fTU(UéVMSp)] of the test parameter for the

output of such a source.

From (17) it follows that Var[logy A, (RY)] = w(27%)—v(27F)2 which together with limf,_, .. [w(r)—
v(r)?] = limp oo [w(r) — (C — logy r)?] and (21) gives

Jim Varflog, A (RN)] = D-C? = 3.423715.
— 00

We now analyze the performance of the test for a biased binary memoryless source BMS,,
with output sequence U]JBVMSP. The blocks bn(UéVMSp) are statistically independent and thus
using (15), (20) and the fact that for L — oo, Pr[bn(UéVMSp) = b] — 0 for all b € B one can
show that

Jim (Elfr, (Us,)) - Lh(p)) = C

for 0 < p < 1. This demonstrates that the test Ty measures the entropy of any binary
memoryless source up to a constant. Table Il summarizes E[]‘T(](U]]3V1\/[Sp)]7 Lh(p) + C and
Varl[log, An(UéVMSP)] for L =8 and L = 16 and for several values of p and demonstrates the
close relationship between the expected value of the test parameter and the entropy of the
source BMS,,. Some entries of Table I were computed by Maarten van der Ham on a CRAY
Y/MP computer at CWI, Amsterdam.

By arguments similar to those used in [12] one can prove that for every binary ergodic

stationary source S with output sequence Uév,

N
lim M - Hs.
L—oo L

We conjecture that this asymptotic relation between E[fr, (UL )] and Hgs can be made even
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more precise, namely that

Jim (Elfr, (U] - Lh(p)) = C.
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7. Conclusions

The new statistical test described in this paper is based on a more general statistical
model than those previously considered in the context of statistical tests, namely an ergodic
stationary source with memory M < L, where L is a parameter of the test. This model
can reasonably be argued to comprise most defects that can realistically be expected in a
practical implementation of a random bit generator based on a chaotic physical process such
as the thermal noise in a transistor. Another novel feature of the test is that it measures the

actual cryptographic significance of a possible defect, namely the per-bit redundancy.

The performance of a statistical test depends in a crucial manner on the statistical model
on which the test is based. The more general the model, the wider is the class of possible
defects that can be detected. On the other hand, the more restricted the model, the better
a test based on this model is generally suited for detecting a defect that can be described
by the model, i.e., a shorter sample sequence is needed to detect a defect. When designing
a statistical test for testing the randomness of a device’s output sequence it is therefore very
important that an appropriate model is used. To illustrate this, consider the performances of
the frequency test and of our new test on a device that can be modeled as a binary memoryless
source emitting 1’s with probability 0.45 and 0’s with probability 0.55. Because the per-bit
entropy H (0.45) = 0.9928 of this source is very close to 1, the universal test will need a much
longer sample sequence to detect the non-randomness of this source with the same detection
probability as a frequency test. For this example and for L. = 8 one can show that the
sequence must be 29 times longer for the universal test. On the other hand, the frequency
test is unable to detect any dependencies between consecutive bits. Therefore, if for a certain
application a bias in the distribution of 0’s and 1’s is the only defect that can reasonably be
expected, a frequency test is optimal. Note also that because the per-bit entropy measures
the effective key size, using the above biased source would only slightly reduce the security
of a cipher system. Of course, we do not suggest that a source with such a bias be used in
practice because any deviation from the statistics of a BSS may indicate that there exists a

possibly much stronger hidden defect.
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